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Generalized planning is the task of generating a single solution (a generalized plan) that 
is valid for multiple planning instances. In this paper we introduce a novel formalism for 
representing generalized plans that borrows two mechanisms from structured program-
ming: control flow and procedure calls. On one hand, control flow structures allow 
to compactly represent generalized plans. On the other hand, procedure calls allow to 
represent hierarchical and recursive solutions as well as to reuse existing generalized 
plans. The paper also presents a compilation from generalized planning into classical 
planning which allows us to compute generalized plans with off-the-shelf planners. The 
compilation can incorporate prior knowledge in the form of auxiliary procedures which 
expands the applicability of the approach to more challenging tasks. Experiments show 
that a classical planner using our compilation can compute generalized plans that solve 
a wide range of generalized planning tasks, including sorting lists of variable size or DFS 
traversing variable-size binary trees. Additionally the paper presents an extension of the 
compilation for computing generalized plans when generalization requires a high-level 
state representation that is not provided a priori. This extension brings a new landscape 
of benchmarks to classical planning since classification tasks can naturally be modeled as 
generalized planning tasks, and hence, as classical planning tasks. Finally the paper shows 
that the compilation can be extended to compute control knowledge for off-the-shelf 
planners and solve planning instances that are difficult to solve without such additional 
knowledge.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Generalized planning is the task of generating a single solution valid for multiple planning instances. Unlike classical 
plans, generalized plans are built with algorithm-like structures that make their execution flexible and adaptable to different 
planning instances. As a consequence generalized plans can solve planning tasks beyond the scope of classical planning like 
planning tasks of unbound size, with partially observable states and/or with non-deterministic actions [1–5].

In this paper we introduce an innovative formalism for representing generalized plans that we call planning programs
and that borrows two effective mechanisms from structured programming: control flow, in the form of conditional goto
instructions, and procedure calls. While conditional gotos allow us to compactly encode complex solutions valid for a set 
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of planning instances, procedure calls allow us to represent hierarchical and recursive solutions as well as to reuse existing 
generalized plans.

Our approach for computing generalized plans of this kind is defining a compilation into classical planning, making it 
possible to generate generalized plans using an off-the-shelf classical planner. Briefly, our compilation encodes a bounded 
number of program lines and a program counter, and introduces actions for programming and executing the instructions 
on different program lines. A solution to the classical planning task resulting from the compilation is a sequence of actions 
that encodes the instructions in the program lines and executes them on all the instances of the generalized planning 
task. Interestingly the compilation can incorporate prior knowledge, in the form of auxiliary procedures, and automatically 
complete the definition of the remaining program. This allows us to reuse existing generalized plans and to address more 
challenging generalized planning tasks by incrementally creating hierarchies of generalized plans.

In some domains the computation of a compact generalized plan is only possible if a particular high-level representation 
of the states is available. For instance in the classic blocksworld domain, the high-level state features that capture when a block 
is at its goal position [6,7]. In most applications of generalized planning such features are hand-coded by domain experts. 
In this paper we present an extension of our compilation to integrate the computation of features with the computation 
of generalized plans, generating solutions that generalize without a prior high-level representation of the states. It is worth 
mentioning that this extension allows us to model supervised classification tasks as classical planning instances.

Even if the language for representing the generalized plans is expressive it may still be complex to achieve generalization 
if the instances in the generalized planning task do not share a clear common structure. In such cases representing and 
computing solutions with non-deterministic execution may be useful [8]. Solutions of this kind are more flexible because 
they allow open segments that are only determined when the solution is executed in a particular instance. In this paper we 
introduce two different extensions of our planning program formalism to achieve generalization through non-deterministic 
execution: choice instructions and lifted action instructions.

For clarity, we present each extension separately as a modification of basic planning programs that do not involve 
procedures. However, it is straightforward to combine multiple extensions, e.g. high-level state features and choice instruc-
tions. All source code and related documentation is available in a public repository (https://github .com /aig -upf /automated -
programming -framework), which also explains how to configure different combinations of our extensions.

A first description of the compilation and its extensions previously appeared in several conference papers [9–11]. Com-
pared to the conference papers, the present paper includes the following novel material:

• We set down the theoretical foundations of the planning program formalism and show that plan validation and plan 
existence for planning programs is PSPACE-complete. In addition we provide formal characterizations of the solutions 
that can be represented with our formalism and prove that the expressiveness of our different forms of planning 
programs is equivalent.

• We unify the different formulations of our compilation for computing planning programs and its extensions for comput-
ing planning programs with procedures and with high-level state features and provide formal proofs of their soundness 
and completeness.

• We introduce two novel formalisms for planning programs with non-deterministic execution: choice instructions and 
lifted action instructions.

• We show how to implement the validation mechanism for planning programs within our compilation. We use this 
mechanism to show that reusing generalized plans and using generalized plans as control knowledge allow us to solve 
planning instances that are difficult to solve using current classical planners, like blocksworld instances with 100 blocks.

• We report new experimental results using our compilation with different off-the-shelf planners. In addition we intro-
duce new challenging domains for generalized planning that correspond to well-known programming tasks as well as 
a new domain from program synthesis and discuss the pros and cons of applying our approach to this kind of tasks.

The paper is structured as follows, Section 2 puts our work into context by reviewing previous work on generalized 
planning and program synthesis. Section 3 defines the planning models we will rely on along this work, classical plan-
ning with conditional effects and generalized planning. Section 4 presents our planning program formalism for representing 
generalized plans and defines their theoretical properties. Section 5 presents our compilation and its extension to compute 
planning programs and planning programs with callable procedures for solving generalized planning task. Section 6 shows 
how to extend the compilation to integrate the computation of features with the computation of generalized plans. Sec-
tion 7 shows how to compute planning programs with non-deterministic execution. Finally Section 8 wraps-up our work 
and discusses open issues and future work.

2. Related work

The computation of general strategies for planning has been studied since the early days of AI. Different formalisms for 
representing planning solutions that generalize and different algorithms for computing them have been proposed.

Macro-actions (i.e. action sub-sequences) were among the first suggestions to compute general knowledge for planning 
and there are several approaches in the literature for computing them [12–14]. However, the sequential execution flow fixed 
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by macro-actions is usually too rigid and, even when macros are parameterized, they have to be combined with control-flow 
structures in order to generalize to more planning instances.

Generalized policies are a more flexible formalism than macros. A generalized policy is a set of rules mapping states and 
goals into actions; hence generalized policies are reactive and do not explicitly represent action sequences. Computing good 
generalized policies is however complex. Early algorithms for computing generalized policies [6,7] first compute sequential 
plans, and then attempt to generalize the policy rules from these plans, a difficult task because of the high number of 
symmetries and transpositions that commonly appear in sequential plans. Moreover, a generalized policy cannot be added 
straightforward to a domain theory. There are however, effective mechanisms for exploiting generalized policies as Domain-
specific Control Knowledge (DCK) to guide the search process of heuristic planners [15,16].

Recent algorithms for generalized planning tightly integrate planning and generalization and interleave programming
the solution with validating it on multiple test cases. Works following this approach impose a stronger constraint on the 
planning tasks to solve and share, not only the domain theory (actions and predicates schemes), but the state space [10]
or at least the observation space [2]. Algorithms of this kind search in the space of possible solutions and, similar to 
what is done in SATPLAN approaches [17], the search is typically bound to a maximum size of the solution to keep it 
tractable. This approach includes works that compile the generalized planning task into a conformant planning task [2], 
a CSP [18] or a Prolog program [5]. The work presented in this paper is also included in this group. Compared to previous 
work, our contributions are 1) that generalized plans represented as programs are highly intuitive to humans; 2) that we 
can compute generalized plans using an off-the-shelf classical planner; and 3) that our planning program formalism can 
represent hierarchical and recursive solutions, to reuse existing generalized plans and to compute generalized plans with 
high-level state features.

An alternative approach is to look at a single planning instance, compute a solution that solves that instance, generalize 
it, and then merge it with the previously found solutions incrementally increasing the coverage of the generalized plan. This 
approach is related to previous works on plan repair [19] and Case-Based Planning (CBP) [20] since it demands identifying 
why a solution does not cover a given instance and adapting it to the uncovered instance. The Distill system [1] lies in this 
category and, as our work, uses programs to represent generalized plans. However, its representation is different and its 
performance was not tested over a wide range of diverse generalized planning tasks.

The Golog family of action languages has proven useful for programming autonomous behavior that is able to gen-
eralize [21]. Apart from conditionals, loops and recursive procedures, Golog programs can contain non-deterministic parts. 
A Golog program does not need to represent a fully specified solution, but a sketch of it, where the non-deterministic parts 
are gaps to be filled by the system. The Golog programmer can determine the right balance between predefined behavior 
and leaving certain parts to be solved by the system by means of search. The basic Golog interpreter uses the PROLOG 
back-tracking mechanism to resolve the search. This mechanism basically amounts to do a blind search so, when addressing 
planning tasks, it soon becomes unfeasible for all but the smallest instance sizes. IndiGolog [22] extends Golog to contain 
a number of built-in planning mechanisms. Furthermore the semantics compatibility between Golog and PDDL [23] can be 
exploited and a PDDL planner can be embedded [24] to address the sub-problems that are combinatorial in nature. We 
defined our own programming language that defines the space of possible generalized plans. In this language branching and 
loops are implemented with the same construct (conditional gotos) to keep the solution space as reduced as possible.

The series of works on generalized planning by Srivastava et al. proposes an expressive form of generalized plans with 
choice actions to decide the objects used by future plan steps [25,4]. Input instances in these works are expressed as an 
abstract first-order representation with transitive closure which allows to represent unbounded numbers of objects. The 
algorithm for computing generalized plans from this input implements a bottom-up strategy that identifies the class of open 
problems for an existing partial generalized plan and efficiently generate small instances of this class. The algorithm starts 
with an empty generalized plan, and incrementally increases its applicability by identifying a problem instance that it cannot 
solve, invoking a classical planner to solve that instance, generalizing the obtained solution and merging it back into the 
generalized plan. The process is repeated until producing a generalized plan that covers the entire desired class of instances 
(or when a predefined limit of the computation resources is reached). Although this approach benefits from off-the-shelf 
solvers to generate the solutions to the specific instances it requires developing specific techniques to generalize, adapt and 
merge plans. Our approach represents the generalized planning task to solve as a set of example tasks, similar to a training 
set in Machine Learning (ML). Each of these input tasks is a standard classical planning task coded in PDDL. We follow a 
top-down approach for generalized planning that, in a single planning episode, computes a generalized plan that covers all 
the input tasks and using exclusively an off-the-shelf classical planner.

Contingent planning [26] can be seen as an example of generalized planning where all the input instances to be solved 
(1), share the same goals and (2), are defined as the set of possible initial states of the contingent planning task. Contingent 
planners use state abstraction to represent the sets of possible states as belief states and include sensing actions that divide 
a given belief state in terms of the value of the sensed variable. A contingent plan can then be seen as a generalized plan. 
However, its tree-like representation can grow exponentially increasing the complexity of computing such plans. Previous 
work that automatically compute finite state machines (FSMs) propose changing the representation of contingent plans and 
allow loops that significantly reduce the size of contingent plans while increasing their coverage [2,9]. Generating high-level 
state features for generalized planning is also related to previous work on First Order MDPs [27,28]. These works adapt 
traditional dynamic programming algorithms to the symbolic setting and automatically generate first-order representations 



J. Segovia-Aguas et al. / Artificial Intelligence 272 (2019) 52–85 55
of the value function with first-order regression. Here the contribution of our approach is following a compilation approach 
to generate useful state abstractions with off-the-shelf planners.

The task of synthesizing a program from a given specification is also related to our work on generalized planning. In the 
area of program synthesis there are two recent and successful approaches: Programming by example [29] and Programming by 
sketching [30]. In programming by example a program (or a set of programs) is generated to be consistent with a given set of 
given input–output examples using a domain specific search algorithm. Notable developed techniques for programming by 
example are part of the Flash Fill feature in Excel, Office 2013. In Programming by sketching programmers provide a partially 
specified program, a program that expresses the high-level structure of an implementation but that leaves holes in place of 
low level details to be filled by the synthesizer. This form of program synthesis relies on a programming language SKETCH

for sketching partial programs and a SAT-based inductive synthesis procedure that efficiently synthesizes an implementation 
from a small number of test cases. This approach is able to deal with noisy examples and has been recently applied to 
supervised and unsupervised image classification achieving human performance results [31].

Bounded synthesis addresses the synthesis of finite-state transition systems that satisfy a given LTL formula [32]. The 
mainstream approach for bounded synthesis is compiling this task into a satisfiability modulo theories (SMT) problem. The 
compilation requires fixing a bound on the system parameters, such as the number of rejecting states. The main difference 
with our approach, is that we specify the task to solve by explicitly enumerating a set of test cases that the generalized 
plan should cover, similar to Machine Learning (ML) or to unit tests in Test-Driven Development.

Domain Control Knowledge is a general notion that refers to knowledge about the structure of planning solutions. Plan-
ning with DCK can also be seen as a form of generalized planning, that constrains the space of possible solutions, but requires 
a planner to produce a fully specified solution for a particular classical planing instance. This approach includes previous 
works for planning with control rules [33,34] and hierarchical planning [35,36].

Last but not least our approach for computing high-level state features is inspired by version space learning [37]. The hy-
pothesis to learn consists of logic clauses with the form of conjunctive queries and the examples are logic facts that restrict 
the hypothesis forcing it to be consistent with the examples. Inductive Logic Programming (ILP) [38] also generates hypothe-
ses from examples intersecting ML and Logic Programming. ILP has traditionally been considered a binary classification task 
but, in recent years, it covers the whole spectrum of ML such as regression, clustering and association analysis. The main 
contribution of our approach with respect to version space learning and ILP is the use of a classical planner to build and 
validate the learned hypotheses.

3. Background

To represent the set of planning instances to solve we use classical planning with conditional effects. Conditional effects 
make it possible to repeatedly refer to the same action even though their precise effects depend on the current state. This 
feature is useful to build generalized plans because, as shown in conformant planning [39], it can adapt the execution of a 
given sequence of actions to different initial states. We also introduce here our model for generalized planning in which the 
aim is to compute a plan that solves a class of planning instances, a set of instances that share some common structure, as 
opposed to a single planning problem.

3.1. Classical planning with conditional effects

We use F to denote a set of propositional variables or fluents describing a state. We will often assume that fluents are 
instantiated from predicates, as in PDDL [40]. Specifically, there exists a set of predicate symbols �, and a predicate consists 
of a symbol p ∈ � and an associated argument list of arity ar(p). Given a set of objects �, the set of fluents F is induced 
by assigning objects in � to the arguments of predicates, i.e. F = {p(ω) : p ∈ �, ω ∈ �ar(p)} where, given a set X , Xn is the 
n-th Cartesian power of X .

A state is an evaluation of fluents, i.e. a function s : F → {0, 1}. A partial state is a partial function s : F → {0, 1}. Given 
a (partial) state s and a subset of fluents F ′ ⊆ F , we use s|F ′ to denote the projection of s onto F ′ , i.e. the partial state 
induced by restricting the domain of s to F ′ .

For each fluent f ∈ F we introduce the term ¬ f representing the negation of f . Fluents and their negations are called 
literals. A state s corresponds to an equivalent literal set { f : s( f ) = 1} ∪{¬ f : s( f ) = 0}. The union s ∪ s′ of two partial states 
is a new partial state which is well-defined as long as s and s′ do not disagree on the value of some fluent. We can also use 
the notation s′ ⊆ s to denote that s′( f ) = s( f ) whenever s′( f ) is defined. Explicitly including negative literals ¬ f simplifies 
subsequent definitions, but we often abuse notation by defining a state s only in terms of the fluents that are true in s, as 
is common in classical planning.

We consider the fragment of classical planning with conditional effects that includes negative conditions and goals. 
Under this formalism, a classical planning frame is a tuple � = 〈F , A〉, where F is a set of fluents and A is a set of actions 
with conditional effects. Each action a ∈ A has a partial state pre(a) called the precondition and a set of conditional effects 
cond(a). Each conditional effect C � E ∈ cond(a) is composed of two partial states C (the condition) and E (the effect).

An action a ∈ A is applicable in state s if and only if pre(a) ⊆ s, and the resulting set of triggered effects is

eff(s,a) =
⋃

E,
C�E∈cond(a),C⊆s
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Fig. 1. Example of three individual classical planning tasks comprised in a generalized planning task P = {P1, P2, P3}.

i.e. effects whose conditions hold in s. We assume that eff(s, a) is a well-defined partial state for each state s and action a. 
The result of applying a in s is a new state θ(s, a) defined as

θ(s,a)( f ) =
{

eff(s,a)( f ), if eff(s,a)( f ) is defined,

s( f ), otherwise.

Given a planning frame � = 〈F , A〉, a classical planning problem is a tuple P = 〈F , A, I, G〉, where I is an initial state and 
G is a goal condition, i.e. a partial state on F . A plan for P is an action sequence π = 〈a1, . . . ,an〉 that induces a state 
sequence 〈s0, s1, . . . , sn〉 such that s0 = I and, for each 1 ≤ i ≤ n, ai is applicable in si−1 and generates the successor state 
si = θ(si−1, ai). The plan π solves P if and only if G ⊆ sn , i.e. if the goal condition is satisfied following the application of π
in I .

3.2. Generalized planning

Our definition of the generalized planning task is based on that of Hu and De Giacomo [41], who define a generalized 
planning problem as a finite set of multiple individual planning problems P = {P1, . . . , P T } that share the same observations 
and actions. Although actions are shared, in their formalism each action can have a different definition (precondition and 
conditional effects) in each individual planning problem.

In this work we restrict the above definition for generalized planning in two ways:

1. States are fully observable, so observations are equivalent to states, and sharing the observation set amounts to sharing 
the fluent set F .

2. Each action has the same definition (precondition and conditional effects) in each individual problem.

As a consequence, the individual problems P1 = 〈F , A, I1, G1〉, . . . , P T = 〈F , A, IT , G T 〉 are classical planning problems that 
share the same planning frame � = 〈F , A〉, and differ only in the particular initial state and goals.

Our definition of generalized planning is related to previous work on planning and learning that extract and reuse general 
knowledge from different tasks of the same domain [42,43]. In previous work, planning problems from the same domain 
share the same set of predicate symbols �. In this paper, we impose a stronger constraint: the set of objects � assigned to 
the arguments of predicates in � has to be shared, and hence also the induced fluent set F .

Fig. 1 shows an example of a generalized planning problem that comprises three individual classical planning tasks, 
P = {P1, P2, P3}. In this example F includes the fluents necessary for encoding the structure of the grid, the current and 
target position of the agent in the grid and the fluents that capture when the agent is at its target position. The shared set 
of actions, A = {↑, ↓, ←, →}, comprises four actions each moving the agent one cell in one of the four cardinal directions. 
The three individual planning tasks are navigation tasks for moving the agent from cell (3, 3) to cell (1, 1) in the case of 
P1, from cell (4, 1) to cell (5, 4) in the case of P2 and from (3, 5) to (2, 2) in the case of P3.

Note that our definition of generalized planning makes it possible to encode individual planning tasks with different grid 
sizes. To do so we first define enough fluents to represent the task with the largest number of rows and columns. We then 
define fluents of type max(x, a) and max(y, b) that encode variable grid boundaries: if max(x, a) is true, valid rows are in 
the range [1, a], and likewise for columns. Hence smaller tasks will include the same fluents as larger tasks, but some of 
those fluents are unreachable (and thus not used) due to being outside of the established grid boundaries.

Given a generalized planning problem P , by generalized plan we mean any construct that makes it possible to efficiently 
extract a solution plan πt to each individual planning problem Pt ∈ P , 1 ≤ t ≤ T . In the literature, generalized plans have 
diverse forms that range from DS-planners [1] and generalized polices [7] to finite state machines (FSMs) [2]. Each of these 
representations has its own syntax and semantics but they all allow non-sequential execution flow to solve planning in-
stances with different initial states and goals. A generalized plan for solving the generalized planning problem of Fig. 1 is 
given by: moving the agent down and left until reaching the grid cell (1,1), moving the agent up until reaching the target row and 
finally, moving the agent right until reaching its target column. In this work we restrict generalized plans to have the form of 
planning programs as defined in the next section.

According to our definition of the generalized planning task the particular case where |P| = 1 corresponds to classical 
planning with conditional effects. The case for which all the individual problems in P share the same goals, G1 = G2 = · · · =
G T −1 = G T , corresponds to conformant planning [39]. Nevertheless the form of the solutions is different. While solutions in 
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classical planning or in conformant planning are defined as sequences of actions, generalized plans relax this assumption and 
exploit a more expressive solution representation with non-sequential execution that can achieve more compact solutions.

4. Planning programs

This section introduces the basic version of the planning program formalism. In its simplest form, a planning program is 
a sequence of planning actions enhanced with goto instructions, i.e. conditional constructs for jumping to arbitrary locations 
of the program, allowing for non-sequential plan execution with branching and loops. We first define basic planning pro-
grams and prove that they are PSPACE-complete to compute. We then describe a compilation from generalized planning to 
classical planning which allows us to automatically compute planning programs, showing that the compilation is sound and 
complete. Finally we present several experimental results.

4.1. Basic planning programs

Given a classical planning frame � = 〈F , A〉, a basic planning program � = 〈w0, . . . , wn〉 is a sequence of instructions. 
Each instruction wi , 0 ≤ i ≤ n, is associated with a program line i and is drawn from a set of instructions I defined as

I = A ∪ Igo ∪ {end }, Igo = {goto(i’,!f) : 0 ≤ i′ ≤ n, f ∈ F }.
In other words, each instruction is either an action instruction a ∈ A, a conditional goto instruction goto(i’,!f) or 
a termination instruction end. A termination instruction acts as an explicit marker that program execution should end, 
similar to a return statement in programming. We explicitly require that the last instruction wn should equal end, and 
since this instruction is fixed, we say that � has |�| = n program lines, even though � in fact contains n + 1 instructions.

The execution model for a planning program � consists of a program state (s, i), i.e. a pair of a planning state s ⊆ F
and a program counter whose value is the current program line i, 0 ≤ i ≤ n. Given a program state (s, i), the execution of 
instruction wi on line i is defined as follows:

• If wi ∈ A, the new program state is (s′, i + 1), where s′ = θ(s, wi) is the result of applying action wi in planning state 
s, and the program counter is simply incremented.

• If wi = goto(i’,!f), the new program state is (s, i + 1) if f ∈ s, and (s, i′) otherwise. We adopt the convention of 
jumping to line i′ whenever f is false in s. Note that the planning state s remains unchanged.

• If wi = end, the execution terminates.

To execute a planning program � on a planning problem P = 〈F , A, I, G〉, we set the initial program state to (I, 0), 
i.e. the initial state of P and program line 0. We say that � solves P if and only if the execution terminates and the goal 
condition holds in the resulting program state (s, i), i.e. G ⊆ s ∧ wi = end. A planning program � can fail to solve P for 
three reasons:

1. Execution terminates in program state (s, i) but the goal condition does not hold, i.e. G �⊆ s ∧ wi = end.
2. When executing an action wi ∈ A in program state (s, i), the precondition of wi does not hold, i.e. pre(wi) �⊆ s.
3. Execution enters an infinite loop that never reaches an end instruction.

This execution model is deterministic and hence a basic planning program can be viewed as a form of compact reactive plan 
for the class of planning problems defined by the corresponding generalized planning task.

Fig. 2(a) shows an example planning program � for navigating to the (1, 1) cell in a grid. Variables x and y represent the 
position of the current grid cell. Instructions dec(x) and dec(y) decrement the value of x and y. The goto instructions
goto(0,!(x=1)) and goto(2,!(y=1)) jump to line 0 when x �= 1 and to line 2 when y �= 1, respectively. For com-
pleteness, the formal PDDL definition of the grid navigation domain and the example planning problem in Fig. 2(b) appear 
in Appendix A. Note that the conditional effects of actions dec(x) and dec(y) are limited by the values in the domain 
of variables x and y, which are explicitly modeled as objects v1, . . .,v5. For example, attempting to decrement the value of 
x when x = 1 has no effect, i.e. the value of x remains equal to 1.

The execution of � on the classical planning problem illustrated in Fig. 2(b) produces the following sequence of planning 
actions: 〈dec(x),dec(x),dec(x),dec(y),dec(y)〉. Note that � solves any planning problem of this domain whose 
goal is to be at cell (1, 1), no matter the grid size.

4.2. Theoretical properties of basic planning programs

In this section we prove several theoretical properties regarding basic planning programs. First, we show that plan val-
idation and plan existence is PSPACE-complete. Since a planning program � is defined in terms of the number of program 
lines n = |�|, we focus on bounded plan existence; if the number of program lines is unbounded, a basic planning program 
can represent any sequential plan without the need for goto instructions.
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0. dec(x)
1. goto(0,!(x=1))
2. dec(y)
3. goto(2,!(y=1))
4. end

I

G

(a) (b)

Fig. 2. (a) Example planning program � for navigating to cell (1,1); (b) An execution of � starting at cell (4,3).

We formally define two decision problems for the class of basic planning programs, which we call PP.

VAL(PP) (plan validation for basic planning programs)
Instance: A planning problem P = 〈F , A, I, G〉 and a planning program � ∈ X .
Question: Does � solve P ?

BPE(PP) (bounded plan existence for basic planning programs)
Instance: A planning problem P = 〈F , A, I, G〉 and an integer n.
Question: Does there exist a planning program � ∈ X with at most n program lines that solves P ?

We proceed to prove that the complexity of both decision problems is PSPACE-complete.

Theorem 1. VAL(PP) is PSPACE-complete.

Proof. Membership: Simply use the execution model to check whether a given planning program � solves a planning 
problem P . To store the program state (s, i) we need |F | + log n space. Processing an instruction and testing for failure 
conditions 1 and 2 can be easily done in polynomial time and space. To check whether execution enters into an infinite 
loop, we can maintain a count of the number of instructions processed. If this count exceeds 2|F |n without reaching the
end instruction, this means that at least one program state has been repeated, in which case we stop and report failure. To 
store the count we also need |F | + log n space, which is polynomial in P and �.

Hardness: We adapt Bylander’s reduction from polynomial-space deterministic Turing machine (DTM) acceptance to plan 
existence for classical planning [44]. Given a DTM M with a tape of fixed size K , the idea is to define a planning frame 
�M = 〈F , A〉 such that the set F contains fluents derived from the following predicates:

• at( j, q): Is M currently at tape position j and state q?
• in( j, σ): Is σ the symbol in tape position j of M?
• accept: Does M accept on a given input?

We define a single action simulate with empty precondition and one conditional effect per transition of M . In other 
words, A = {simulate}. Each conditional effect of simulate is on the following form:

{at( j,q), in( j,σ )} � {¬at( j,q),¬in( j,σ ),at( j′,q′), in( j,σ ′)}.
When M is at tape position j and state q and σ is the symbol in j, the transition replaces σ with σ ′ and moves to tape 
position j′ ∈ { j − 1, j + 1} and state q′ . If, instead, M accepts the current configuration, the conditional effect becomes

{at( j,q), in( j,σ )} � {accept}.
Given the planning frame �M and an input string x, we can construct a planning problem P x

M = 〈F , A, I, G〉 such that 
the initial state I initializes the tape position to 1 and the state to q0, and encodes the input string x on the tape:

I = {at(1,q0), in(0,#), in(1, x1), . . . , in(k, xk), in(k + 1,#), . . . , in(K ,#)},
where # is the blank symbol, k is the length of the input string x and K is the fixed size of the tape. The goal condition is 
always defined as G = {accept}.

We now construct the following planning program �M with two program lines:

0. simulate
1. goto(0,!accept)
2. end

Because of the conditional effects of simulate, lines 0 and 1 constitute a loop that repeatedly simulates a transition of M
starting from the initial state. This loop only terminates if M eventually accepts, in which case the goal state G is trivially 
satisfied when execution terminates on line 2. Hence, for any input string x, the planning program �M solves P x if and 
M
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only if M accepts on input x. Since the size of P x
M and �M is polynomial in the size of M , we have produced a reduction 

from DTM acceptance to Val(PP). Since the former is a PSPACE-complete decision problem, this proves that Val(PP) is 
PSPACE-hard. �
Theorem 2. BPE(PP) is PSPACE-complete for n ≥ 2.

Proof. Membership: Non-deterministically guess a planning program � with n program lines. Due to Theorem 1, validating 
whether � solves P is in PSPACE. Hence the overall procedure is in NPSPACE = PSPACE.

Hardness: Given a DTM M and an input string x, consider the planning problem P x
M from the proof of Theorem 1, 

whose size is polynomial in M . There exists a planning program with 2 program lines, namely �M , that solves P x
M if and 

only if M accepts on input x. Hence we have reduced DTM acceptance to BPE(PP) for n = 2, implying that the latter is 
PSPACE-hard. �
4.3. Computing basic planning programs

In this section we describe an approach to automatically compute basic planning programs. The idea is to define a 
compilation that takes as input a generalized planning problem P and a number of program lines n and outputs a classical 
planning problem Pn . We later prove that the compilation is sound and complete, such that any solution π to Pn can be 
transformed into a planning program � = 〈w0, . . . , wn〉 that solves P . The intuition behind the compilation is to extend a 
given planning frame 〈F , A〉 with new fluents for encoding the instructions on the program lines of the planning program, 
as well as the program state (s, i). With respect to the actions, the compilation replaces the actions in A with:

• Programming actions that program an instruction (action, conditional goto or termination) on a given program line. Only 
empty lines can be programmed and initially all the program lines are empty.

• Execution actions that implement the execution model described in Section 4, thereby updating the program state. To 
execute an instruction on a program line, the instruction has to be programmed first. However, it is not necessary to 
program all instructions before executing: rather, programming and execution are interleaved, and an instruction is only 
programmed on demand, i.e. upon reaching an empty program line for the first time.

For simplicity, we first define the compilation for a single planning problem, and later extend it to generalized planning. 
Given a planning problem P = 〈F , A, I, G〉 and a number of program lines n, the output of the compilation is a classical 
planning problem Pn = 〈Fn, An, In, Gn〉. The idea is to define Pn such that any plan π that solves Pn induces a planning 
program � = 〈w0, . . . , wn〉 that solves P .

To specify Pn we have to introduce prior notation. Let F pc = {pci : 0 ≤ i ≤ n} be the fluents encoding the program counter 
and let Fins = {insi,w : 0 ≤ i ≤ n, w ∈ A ∪ Igo ∪ {nil, end}} be the fluents encoding that instruction w was programmed on 
line i. Here, nil denotes an empty instruction, indicating that a line has not yet been programmed. Finally, let done be a 
fluent modeling that we are done programming and executing the planning program.

Let w ∈ I be an instruction in the instruction set I = A ∪ Igo ∪ {end}. For each program line i, 0 ≤ i ≤ n, we define wi as 
a planning action in the set An that executes instruction w on line i. In doing so, we disallow instructions other than end
on the last line n, and we disallow end on the first line 0.

• For each a ∈ A, let ai , 0 ≤ i < n, be a classical planning action with precondition pre(ai) = pre(a) ∪ {pci} and conditional 
effects cond(ai) = cond(a) ∪ {∅ � {¬pci, pci+1}}.

• For each goto instruction goto(i′, ! f ) ∈ Igo , let goi′, f
i , 0 ≤ i < n, be a classical action defined as

pre(goi′, f
i ) ={pci},

cond(goi′, f
i ) ={∅ � {¬pci}, {¬ f } � {pci′ }, { f } � {pci+1}}.

• Let endi , 0 < i ≤ n, be a classical action defined as pre(endi) = G ∪ {pci} and cond(endi) = {∅ � {done}}, corresponding 
to the termination instruction.

Since w may be executed multiple times, we define two versions: P(wi), that is only applicable on an empty line i and 
programs w on that line, and R(wi), that is only applicable when instruction w already appears on line i and repeats the 
execution of w:

pre(P(wi)) = pre(wi) ∪ {insi,nil},
cond(P(wi)) = {∅ � {¬insi,nil, insi,w}},

pre(R(wi)) = pre(wi) ∪ {insi,w},
cond(R(wi)) = cond(wi).
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In other words, P (wi) programs wi on an empty line i, and R(wi) repeats the execution of wi when it is already pro-
grammed on line i.

At this point we are ready to define Pn = 〈Fn, An, In, Gn〉:

• Fn = F ∪ F pc ∪ Fins ∪ {done},

• An = {P(ai),R(ai) : a ∈ A,0 ≤ i < n} ∪ {P(goi′, f
i ),R(goi′, f

i ) : goto(i′, ! f ) ∈ Igo,0 ≤ i < n}
∪ {P(endi),R(endi) : 0 < i ≤ n},

• In = I ∪ {insi,nil : 0 ≤ i ≤ n} ∪ {pc0},
• Gn = {done}.

We next extend the compilation to address generalized planning problems P = {P1, . . . , P T } defined over multiple plan-
ning instances. In this case the solution plan π is a sequence of actions that programs � = 〈w0, . . . , wn〉 and simulates the 
execution of the induced program � on each of the T classical planning instances, each with a different initial state and 
goal condition. Specifically, the compilation starts executing the induced planning program � on P1 and, after validating 
that � reaches G1 starting from I1, resets the program state to (I2, 0) (the initial state of P2 and program line 0). This 
execution of � is repeated for each planning problem Pt , 1 ≤ t ≤ T , thus validating that � solves P .

Given a generalized planning task P = {P1, . . . , P T }, the output of the compilation is a classical planning task P ′
n =

〈F ′
n, A′

n, I ′n, G ′
n〉. Since P ′

n is similar to the planning task Pn presented above, we only describe the differences:

• The set of fluents F ′
n = Fn ∪ Ftest includes a fluent set Ftest = {testt : 1 ≤ t ≤ T } that models the active individual 

planning problem. Initially test1 is true and testt is false for 2 ≤ t ≤ T , and the initial state on fluents in F is I1, 
i.e. I ′n = I1 ∪ {insi,nil : 0 ≤ i ≤ n} ∪ {pc0} ∪ {test1}. The goal is G ′

n = {done}.
• The set of actions A′

n contains all actions in An , but redefines the actions corresponding to the termination instructions. 
Actions endt,i , 0 < i ≤ n are now defined differently for each individual planning problem t , 1 ≤ t ≤ T :

pre(endt,i) = Gt ∪ {pci, testt}, t < T ,

cond(endt,i) = {∅ � {¬pci,pc0,¬testt, testt+1}} ∪ {{¬ f } � { f } : f ∈ It+1} ∪ {{ f } � {¬ f } : f /∈ It+1}, t < T ,

pre(endT ,i) = G T ∪ {pci, testT },
cond(endT ,i) = {∅ � {done}}.

For t < T , action endt,i is applicable when Gt and testt hold, and the effect is resetting the program counter to pc0, 
incrementing the current active test and setting fluents in F to their value in the initial state It+1 of the next planning 
problem. Action endT ,i is defined as the previous action endi , and is needed to achieve the goal fluent done. As before, 
we add actions P(endt,i) and R(endt,i) to the set A′

n for each t , 1 ≤ t ≤ T , and i, 0 < i ≤ n.

Before proving several properties of the compilation, we highlight how programs are represented. Recall that fluents in 
the set Fins model the instruction programmed on each line. In the initial state I ′n , each program line i is empty, represented 
by the fluent insi,nil . The only type of action in A′

n that has an effect on fluents in Fins is the programming action P (wi). 
Because of the precondition insi,nil of P (wi), we can only program an instruction w on an empty line i. Once programmed, 
there is no action in A′

n that deletes instruction w from line i.
The execution of a planning program on a generalized planning problem is simulated using actions of type R(wi). Be-

cause of the precondition insi,w of R(wi), we are forced to program an instruction w on line i before we can execute it. 
As a consequence, if we are given a plan π that solves the compiled planning problem P ′

n , the subsequence of program-
ming actions of type P (wi) uniquely determines the instructions programmed on lines, which in turn define a planning 
program �. We exploit this fact when we later use our compilation to generate planning programs.

We remark that our compilation is flexible with respect to the program represented in the initial state. In particular, 
instead of using fluent insi,nil to indicate that line i is initially empty, we can use a fluent insi,w to indicate that instruction 
w is already programmed on line i from the outset. In this case, instruction w can be immediately executed the first time 
we reach line i, and there is no need to program an instruction. This mechanism allows us to define partial programs in 
the initial state, and we also exploit this property of the compilation in our experiments with plan validation, in which the 
program � is already given.

We proceed to formally prove that the compilation is sound and complete and provide a bound on its size.

Theorem 3 (Soundness). Any plan π that solves P ′
n induces a planning program � = 〈w0, . . . , wn〉 that solves P .

Proof. As already argued, the subsequence of programming actions of type P (wi) that appear in the plan π induces a 
planning program �. The only way to achieve the goal fluent done is to execute the termination instruction endT ,i . Hence 
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the last instruction programmed has to be a termination instruction, ensuring that the induced planning program � is 
well-defined. (Note that � might have less than n program lines since we could program the termination instruction on a 
line i satisfying 0 < i < n.)

The remainder of the proof follows from observing that the repeat actions R(wi) precisely implement the execution 
model for basic planning programs. Executing an action instruction a in program state (s, i) has the effect of updating the 
planning state as s′ = θ(s, a) and incrementing i. Executing a goto action goi′, f

i in (s, i) has the effect of jumping to line i′
if f holds in s and else increment i. Finally, executing a termination action endt,i is only possible if the goal condition Gt

holds for the current planning problem Pt , 1 ≤ t ≤ T . The effect of endt,i is to reset the program state to (It+1, 0), i.e. the 
initial state of the next planning problem Pt+1 and program line 0.

As detailed above, the execution of a basic planning program � is a deterministic process that fails to solve a generalized 
planning problem P only under three conditions. If the plan π is generated via our compilation, none of the three conditions 
hold: the precondition of each action instruction has to hold during execution, the goal condition is checked once execution 
terminates, and infinite loops would prevent the plan π from solving the compiled planning problem P ′

n . Execution starts 
on the first individual classical planning problem P1 ∈ P and finishes when the last problem P T has been solved. The only 
way to achieve this condition is by programming the instructions of � and iteratively validating that the program solves all 
the problems in P , iteratively switching from one problem Pt ∈P to the next. Switching is only possible when Gt , the goal 
condition of problem Pt , holds. Hence for π to solve P ′

n , the simulated execution of the induced planning program � has 
to solve each problem Pt , 1 ≤ t ≤ T , i.e. � solves P . �
Theorem 4 (Completeness). If there exists a planning program � that solves P such that |�| ≤ n, there exists a corresponding plan π
that solves P ′

n.

Proof. We construct a plan π as follows. Whenever we are on an empty line i, we program the instruction specified by �. 
Otherwise we repeat execution of the instruction already programmed on line i. The plan π constructed this way has the 
effect of programming � and simulating the execution of � on each planning problem in P . Since � solves P , � solves 
each individual problem Pt , 1 ≤ t ≤ T , and hence the goal condition Gt is satisfied after simulating the execution of �
on Pt . This implies that the plan π solves P ′

n . �
Note that the compilation is not complete in the sense that the bound n on the number of program lines may be 

too small to accommodate a planning program � that solves P . In many domains a bounded program can only solve 
a generalized planning task if a high-level state representation is available that accurately discriminates among states. 
For instance, the program in Fig. 2 cannot be computed if n < 4. Larger values of n do not formally affect to the com-
pleteness of our approach but they do affect its practical performance since classical planners are sensitive to the input 
size.

Theorem 5 (Size). Given a generalized planning problem P = {P1, . . . , P T } on a planning frame � = 〈F , A〉 and a bound n on the 
number of program lines, the size of the compiled problem P ′

n = 〈F ′
n, A′

n, I ′n, G ′
n〉 is given by |F ′

n| = O (n|A| + n2|F | + T ) and |A′
n| =

O (n|A| + n2|F | + nT ).

Proof. By inspection of the fluent set F ′
n and the action set A′

n . The set F ′
n is composed of F , F pc , Fins , Ftest and the single 

fluent done. The size of F pc is n +1, the size of Ftest is T , while Fins contains n +1 copies of each action in A, goto instruction 
in Igo , empty marker nil and end instruction end. Hence the size of Fins is (n + 1)(|A| + (n + 1)|F | + 2) = O (n|A| + n2|F |), 
which dominates the sizes of F and F pc . The action set A′

n defines one action per instruction in I , including T copies 
of the end instruction, for a total of |A| + (n + 1)|F | + T . There are n copies of each such instruction, one per program 
line, and two versions that program and repeat an instruction on a given line, for a total of 2n(|A| + (n + 1)|F | + T ) =
O (n|A| + n2|F | + nT ). �

Note that the number of goto instructions is the dominant term, growing as O (n2|F |). We now introduce an optimization 
that reduces the number of goto instructions from O (n2|F |) to O (n|F | + n2). The idea is to split actions of type gotoi′, f

i

into two actions: eval f
i , that evaluates condition f on line i, and jmpi′

i , that performs the conditional jump according to the 
evaluation outcome. This is inspired by assembly languages that separate comparison instructions that modify flags registers, 
e.g., CMP and TEST in the x86 assembly language, from jump instructions that update the program counter according to 
these flag registers, e.g., JZ and JNZ in x86 assembly.

To implement the split we introduce two new fluents acc and eval, initially false. Fluent acc records the outcome of the 
evaluation, while eval indicates that the evaluation has been performed. Actions eval f

i and jmpi′
i are defined as

pre(eval f
i ) = {pci,¬eval},

cond(eval f
) = {{ f } � {acc}} ∪ {∅ � {eval}},
i
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Table 1
Plan generation for Planning Programs. Program lines and number of used instances; fluents and actions; search, preprocess and total time (in seconds) 
elapsed while computing the solution.

Lines Instances Fluents Actions Search(s) Preprocess(s) Total(s)
Find 4 3 671 1044 274.20 0.66 274.86
Reverse 4 2 666 1041 86.96 0.92 87.86
Select 4 4 1028 1688 178.94 25.26 204.20
Triangular 3 2 323 324 0.38 0.47 0.85

pre(jmpi′
i ) = {pci,eval},

cond(jmpi′
i ) = {∅ � {¬pci,¬eval}, {¬acc} � {pci′ }, {acc} � {pci+1,¬acc}}.

Likewise, we can replace each fluent insi,w ∈ Fins which indicates that a goto instruction w = goto(i′, ! f ) has been pro-
grammed on line i by two fluents insi, f and insi,i′ , where the former indicates that f is the condition of the goto instruction 
on line i, and the latter indicates that we should jump to line i′ if f is false. As a result of the optimization, the size of the 
planning problem P ′

n becomes |F ′
n| = O (n(|A| + |F | + n) + T ) and |A′

n| = O (n(|A| + |F | + n + T )).

4.4. Experiments

We perform two sets of experiments for planning programs. In the first set of experiments we take as input a generalized 
planning problem P , and use the compilation P ′

n to automatically generate a planning program �, with at most n lines, 
that solves P . In the second set of experiments we take as input a planning problem P and a planning program �, and 
determine whether � solves P . Thus the two sets of experiments roughly correspond to the two decision problems BPE(PP) 
and VAL(PP), although plan generation goes beyond plan existence in that we actually produce the planning program �
that solves the instance (or set of instances). In all experiments we use the Automated Programming Framework (APF)1 to 
compute the compilation P ′

n .
For plan generation we use the classical planner Fast Downward [45] (FD) in the Lama-2011 setting [46] on a Intel Core 

i7 2.60 GHz x 4 processor with a 4 GB memory bound and a time limit of 3600 s. For validation we use FD in the same 
setting and a Breadth First Search (BrFS) planner from the Lightweight Automated Planning ToolKiT (LAPKT) [47] for all the 
experiments.

We evaluate our approach in the following generalized planning tasks: Find, Reverse, Select and Triangular. In Find we 
must count the number of occurrences of a specific element in a vector. In Reverse we have to reverse the content of 
a vector. In Select, given a vector of integers we have to search for the minimum element and corresponding index. In
Triangular the aim is to compute the triangular number 

∑N
n=1 n for a given integer N .

In previous work [10], the above domains were defined and fine-tuned independently. However, when a set of domains 
share many features, they can be defined on a common planning frame � = 〈F , A〉. In this work, we defined a PDDL domain 
called Pointers that represents a vector with pointers pointing to certain elements, and actions that increment or decrement
pointers and that swap the values of two pointers. This common planning frame allows us to represent all instances of 
the three generalized planning tasks Find, Reverse and Select. Defining a common planning frame in this way is similar to 
programming, in which the set of statements is fixed for different problems.

Table 1 reports the number of lines required to generate a planning program, and the number of instances of the 
generalized planning problem P provided as input, where each instance may test a corner case. Then, we use a classical 
planner to solve the compiled planning instance P ′

n . Heuristic search planners usually involve a preprocessing step where 
fluents and actions are generated. We use FD in the LAMA-2011 setting as a classical planner, and report the number of 
fluents and actions as an estimate of the complexity of the output planning problem P ′

n . The resulting plan π induces a 
planning program � that solves the generalized planning task, and we report the search, preprocess and total time.

In previous work [10] the reported planning times for Find, Reverse and Select were shorter. The reason is that defining 
the three domains on a common planning frame results in less optimized planning instances, since there may be additional 
fluents and actions that are not relevant for the particular problem. These extra operators that allow us to model more 
planning problems using the same domain at the same time cause the solution time to increase.

Fig. 3 shows the obtained planning programs, which are the same as in our previous work. In � f ind , pointer a initially 
points to the head of the vector, while counter c equals 0. Lines 2–3 use a to iterate over all elements, while lines 0–1 
increment c whenever the content of a equals the element we are looking for. In �reverse , a initially points to the head and 
b to the tail of the vector. The program repeatedly swaps the contents of a and b and move a and b towards the middle of 
the vector. In �select , a and b initially point to the head, and again, lines 2–3 use a to iterate over all elements. Whenever 
the content of a is less than that of b, line 1 assigns a to b, effectively storing the minimum element in b. In �triangular , y
initially stores the integer N , and the program stores the result 

∑N
n=1 n in x.

In a second set of experiments we validate the planning programs in Fig. 3 on a set of larger instances. Because the 
planning programs are given as input, we directly assign them to the initial state of P ′

n . In Find, Reverse and Select, we 

1 The public APF repository is at the following URL: https://github .com /aig -upf /automated -programming -framework.

https://github.com/aig-upf/automated-programming-framework
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0. goto(2,!(found(a))) 0. swap(*a,*b) 0. goto(2,!(lt(*a,*b))) 0. add(x,y)
1. inc(c) 1. inc-pointer(a) 1. assign(b,a) 1. dec(y)
2. inc-pointer(a) 2. dec-pointer(b) 2. inc-pointer(a) 2. goto(0,!(eq(y,0))
3. goto(0,!(eq(a,tail))) 3. goto(0,!(lt(b,a))) 3. goto(0,!(eq(a,tail))) 3. end
4. end 4. end 4. end

(a) (b) (c) (d)

Fig. 3. Illustration of the generated programs. (a) � f ind for counting the number of occurrences of an element in a vector; (b) �reverse for reversing a 
vector; (c) �select for selecting the minimum element of a vector; (d) �triangular for computing ∑N

n=1 n.

Table 2
Generalized plan validation. In Compiled Tests, we compute the fluents, actions, expanded nodes and total time (in seconds) to obtain a plan for FD and 
BrFS. In Classical Tests, we compute the fluents, actions, expanded nodes and time taken by FD and BrFS to solve the instance without using the planning 
program.

Compiled tests Classical tests

F A Exp/T (FD) Exp/T (Brfs) F A Exp/T (FD) Exp/T (Brfs)
Find 118 9 161/1.06 220/1.05 427 5 -/TE -/TE
Reverse 404 7 -/TE 97/2.91 394 4 -/TE -/TE
Select 119 9 154/7.65 213/1.05 264 4 -/TE -/TE
Triangular 251 6 -/TE 76/70.66 242 5 -/TE 4719/92.70

tested the planning programs on vectors of size 30, significantly larger than those used as input for plan generation. In 
Triangular, the aim was to compute the sum of the first 15 natural numbers. Apart from validating each planning program 
using the two planners FD and BrFS (compiled tests), we also compare the total number of expanded states and time taken 
for each planner to compute the solution from scratch without using the planning program (classical tests).

The results of the second set of experiments are shown in Table 2. For Compiled Tests, BrFS performs always faster than
FD and capable of solving every compiled instance. In several cases, and mostly for Classical Tests, the planners were unable 
to compute a solution within the given time limit (TE = Time-Exceeded) showing how helpful DCK is.

Even though validation only involves the deterministic execution of a program on a given instance, the preprocessing 
step of FD often struggles to generate the corresponding fluents and actions. In particular, this happens when the number 
of objects of the input planning instance is very large. For instance, the Find domain is validated on an instance with 31 
objects corresponding to values and indices of a vector, and the total time of FD is dominated by preprocessing, while search 
is extremely fast. This is the reason that FD fails to validate many input instances. The BrFS setting of the LAPKT planner 
performs a simpler preprocessing step, so the total time is always smaller than that of FD.

4.5. Generalization ability of the compilation

In this section we use the same benchmarks as for basic planning programs: Find, Reverse, Select and Triangular. We ana-
lyze the generalization ability of the compilation in two experiments. In the first experiment, we assign the same instances 
for program generation as in previous experiments and iteratively increment the bounds of the compilation. In the second 
experiment, we provide the correct bounds for which a generalized plan can be found but the input instances are randomly 
generated. Both experiments give an insight into how well the compilation generalizes to different parameters and inputs. 
We used the FD system in the LAMA-2011 setting for these experiments, and a time bound of 600 seconds for generating a 
planning program and 600 seconds more to validate every instance. Finally we analyze FD on different heuristics to check 
how informative they are for generating planning programs.

We describe the methodology that we use in order to generate and validate programs. Our framework requires a config-
uration file that specifies the compilation type (basic or extension), the domain, the set of instances for generation, the set 
of instances for validation and the required bounds (number of lines, size of the stack, maximum execution time, etc.). Of-
ten, for a planning program to generalize it is necessary to define appropriate derived predicates and provide just the right 
amount of informative input instances. For instance, a grid domain where the problem is to reach the rightmost cell can be 
captured in diverse settings. One option is to include a derived predicated that is true in the goal cell (similar to looping 
on observations), another option is to provide two instances of different row lengths to avoid converging on a constant row 
length, etc.

In Table 3 we show the results of the first experiment. Every row has a bounded number of lines and stack size that 
are used to check when FD finds a solution. In this case the only human input is the set of instances, while bounds are 
incremented automatically. For each combination of lines and stack size we report the total time that FD takes to solve 
the problem. NSF means no solution was found, and TE means that preprocessing did not finish within the alloted time 
bound. In case a program is generated, we validate it over a random set of instances as a metric of generalization. There are 
four subcolumns F (Find), R (Reverse), S (Select) and T (Triangular) for each column of Instances, Total Time and Validation, 
indicating the different domains. Results in bold indicate the best solution obtained for each domain. We remark that for the 
best solutions found, failure to solve some instances was due to timeout in the preprocessing step, not due to an incorrect 
solution.
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Table 3
Plan generation for different bounds in Find (F), Reverse (R), Select (S) and Triangular (T) domains using FD in the LAMA-2011 setting. Program lines, stack 
size and number of instances used; total time (in seconds including preprocessing and search) elapsed while computing the solution for each domain. In 
case the planning program is correctly generated, the last column shows the validation over multiple instances. We report here No-Solution-Found (NSF) 
when the planner explores the state space without finding a solution or if there is no solution within the time bound. Also we use Time-Exceeded (TE) 
when the preprocessing did not finish within the time bound.

Lines Stack Instances Total time(s) Validation

F R S T F R S T F R S T
2 1 3 2 4 2 NSF NSF NSF NSF 0/40 0/40 0/40 0/6
2 5 3 2 4 2 NSF NSF NSF NSF 0/40 0/40 0/40 0/6
2 10 3 2 4 2 NSF NSF NSF NSF 0/40 0/40 0/40 0/6
2 20 3 2 4 2 NSF NSF NSF NSF 0/40 0/40 0/40 0/6
3 1 3 2 4 2 NSF NSF NSF 1.27 0/40 0/40 0/40 4/6
3 5 3 2 4 2 NSF NSF NSF 4.39 0/40 0/40 0/40 4/6
3 10 3 2 4 2 NSF NSF NSF 8.86 0/40 0/40 0/40 4/6
3 20 3 2 4 2 NSF NSF TE 17.76 0/40 0/40 0/40 4/6
4 1 3 2 4 2 245.96 90.58 199.57 1.49 27/40 20/40 35/40 4/6
4 5 3 2 4 2 NSF 376.62 NSF 5.40 0/40 20/40 0/40 4/6
4 10 3 2 4 2 NSF NSF NSF 10.63 0/40 0/40 0/40 4/6
4 20 3 2 4 2 NSF NSF TE 20.94 0/40 0/40 0/40 4/6
5 1 3 2 4 2 570.36 66.13 NSF 1.97 2/40 20/40 0/40 4/6
5 5 3 2 4 2 NSF 290.10 NSF 7.15 0/40 20/40 0/40 4/6
5 10 3 2 4 2 NSF 30.20 NSF 13.38 0/40 5/40 0/40 4/6
5 20 3 2 4 2 NSF 71.55 TE 27.43 0/40 5/40 0/40 4/6
6 1 3 2 4 2 NSF 188.90 NSF 3 0/40 20/40 0/40 4/6
6 5 3 2 4 2 NSF 12.46 NSF 12.40 0/40 5/40 0/40 4/6
6 10 3 2 4 2 NSF 24.90 TE 26.53 0/40 5/40 0/40 4/6
6 20 3 2 4 2 NSF 49.22 TE 42.31 0/40 5/40 0/40 4/6
7 1 3 2 4 2 NSF 4.66 NSF 5.56 0/40 5/40 0/40 4/6
7 5 3 2 4 2 NSF 17.50 NSF 21.24 0/40 5/40 0/40 4/6
7 10 3 2 4 2 NSF 34.01 TE 41.06 0/40 5/40 0/40 4/6
7 20 3 2 4 2 NSF 73.74 TE 84.23 0/40 5/40 0/40 4/6
8 1 3 2 4 2 100.9 5.98 NSF 7.36 3/40 5/40 0/40 4/6
8 5 3 2 4 2 78.20 20.10 NSF 28.39 3/40 5/40 0/40 4/6
8 10 3 2 4 2 NSF 47.31 TE 55.61 0/40 5/40 0/40 4/6
8 20 3 2 4 2 NSF 97.97 TE 116.26 0/40 5/40 0/40 4/6
9 1 3 2 4 2 NSF 6.91 NSF 10.38 0/40 5/40 0/40 4/6
9 5 3 2 4 2 NSF 27.88 NSF 40.65 0/40 5/40 0/40 4/6
9 10 3 2 4 2 NSF 48.65 TE 81.49 0/40 5/40 0/40 4/6
9 20 3 2 4 2 NSF 100.40 TE NSF 0/40 5/40 0/40 0/6
10 1 3 2 4 2 121.37 7.76 NSF 15.6 3/40 5/40 0/40 2/6
10 5 3 2 4 2 NSF 28.78 NSF 64.04 0/40 5/40 0/40 2/6
10 10 3 2 4 2 NSF 56.30 TE 320.81 0/40 5/40 0/40 2/6
10 20 3 2 4 2 NSF 116.31 TE NSF 0/40 5/40 0/40 0/6

From Table 3 we can conclude that when the bounds are too small, it is impossible for the planner to find a solution. On 
the other hand, when the bounds are too large, the planner often does not find a solution, either because preprocessing takes 
too long, or because search cannot handle the larger state space. In addition, when the bounds are too large, the planner 
often finds a program with more lines that does not generalize well to other instances. It is clear that the compilation is 
relatively sensitive to the bounds, but the selection of bounds can still be automated by iterating over different combinations 
of the bounds.

In the second experiment, instances are randomly generated while the number of lines and stack size are fixed. In each 
row we specify the number of instances that are chosen from the full set of randomly generated instances. Then we run 
four independent experiments, each with a different set of instances. Table 4 reports the best program found among the 
four experiments for each row. We evaluate programs according to how many instances they solve in the validation phase, 
and as a tiebreaker we use the preprocessing and search time.

Since previous experiments established the best possible validation performance of generated programs, we can compare 
the obtained solutions to the best results in Table 3. In the Find domain, the best validation outcome is produced with 
an input of 4 random instances, while the results in Table 3 were obtained using only three instances, and the resulting 
program does not generalize as well, solving 15 instances compared to 27. In Reverse, the best validation is with just one 
instance, but generalization is again worse, solving 17 instances compared to 20. In Select and Triangular, the best solution 
achieves the same validation measure as in Table 3 (35 and 4, respectively), but Select needs 7 input instances, more than 
the 4 instances used in Table 3. Again, we can conclude that the compilation is relatively sensitive to the nature and number 
of input instances.

Finally, we ran experiments with different heuristics to find out whether some heuristics are better at searching solutions 
to our planning problems compilation. Since the structure of the output planning problems is similar for all domains, we 
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Table 4
Plan generation with random instances in Find (F), Reverse (R), Select (S) and Triangular (T) using FD in the LAMA-2011 setting. For each setting we ran 
four random experiments with different input instances, reporting the program lines, stack size, and total time (in seconds). For each setting we choose the 
best result among the four randomly generated inputs in terms of the validation showed in the last column. We report No-Solution-Found (NSF) when the 
planner explores the state space or exceeds the time bound, and Time-Exceeded (TE) when the preprocessing step exceeds the time bound.

Instances Stack Lines Total time(s) Validation

F R S T F R S T F R S T

1 1 4 4 4 3 0.99 40.47 3.96 0.19 3/40 17/40 2/40 1/6
2 1 4 4 4 3 0.61 48.4 NSF 0.96 4/40 15/40 0/40 4/6
3 1 4 4 4 3 416.27 48.03 TE TE 6/40 15/40 0/40 0/6
4 1 4 4 4 3 20.94 TE NSF TE 15/40 0/40 0/40 0/6
5 1 4 4 4 3 NSF 49.23 TE TE 0/40 15/40 0/40 0/6
6 1 4 4 4 3 NSF TE TE TE 0/40 0/40 0/40 0/6
7 1 4 4 4 3 NSF TE 423.04 TE 0/40 0/40 35/40 0/6
8 1 4 4 4 3 NSF 99.25 TE TE 0/40 15/40 0/40 0/6
9 1 4 4 4 3 NSF TE TE TE 0/40 0/40 0/40 0/6
10 1 4 4 4 3 NSF TE TE TE 0/40 0/40 0/40 0/6

Table 5
Heuristics evaluations for planning programs generation in Find, Reverse, Select and Triangular domains. The columns indicate the number of expanded, 
evaluated and generated nodes during the search phase. We report the plan size, preprocessing time and search time (in seconds). There are cases where 
heuristics do not help to find the planning program reporting Time-Exceeded (TE) or Memory-Exceeded (ME) that corresponds to slow exploration and fast 
generation of nodes. The results with best computational total time for each domain are marked in bold.

Domain Heuristic Expanded Evaluated Generated Plan length Preprocessing(s) Search(s)

Find

Additive – – – – 0.66 ME
Blind – – – – 0.71 ME
Causal graph – – – – 0.72 ME
Context-enhanced – – – – 0.67 ME
FF 139703 526586 605448 51 0.71 30.96
Goal count – – – – 0.75 ME
LAMA-2011 298514 2558305 5970288 51 0.66 274.20
Landmark count – – – – 0.70 ME

Reverse

Additive – – – – 1.03 ME
Blind – – – – 1.03 ME
Causal graph 1846988 1846989 3108541 22 0.92 20.88
Context-enhanced – – – – 1.01 TE
FF – – – – 0.92 TE
Goal count – – – – 0.98 ME
LAMA-2011 226342 557364 7095513 22 0.92 86.96
Landmark count 2785250 2785251 4507445 22 1.05 19.52

Select

Additive – – – – 31.36 TE
Blind – – – – 28.94 ME
Causal graph 3931314 3931315 7291302 73 31.58 235.86
Context-enhanced – – – – 28.47 TE
FF 185522 3282971 3435140 73 25.1 604.48
Goal count – – – – 29.12 ME
LAMA-2011 152195 434383 6279369 73 25.26 178.94
Landmark count 10643057 10643058 21145893 73 28.20 99.44

Triangular

Additive 46 62 314 26 0.30 0.02
Blind 266183 266184 400632 26 0.28 1.60
Causal graph 540 541 987 26 0.32 0.04
Context-enhanced 46 62 314 26 0.30 0.02
FF 46 62 314 26 0.40 0.12
Goal count 266183 266184 400632 26 0.28 1.18
LAMA-2011 2872 5744 8406 26 0.47 0.38
Landmark count 75906 75907 139145 26 0.66 0.36

believe that this is an indicative of how heuristics handle these problems. The outcome of this experiment appears in 
Table 5 and we use the same setting as in Table 1, but only one heuristic is allowed for each generation phase.

The heuristic evaluation shown in Table 5 is about the performance on generation of basic planning programs for differ-
ent domains like Find, Reverse, Select and Triangular. The results show that delete-free relaxation is only helpful for easy 
problems like Triangular but becomes unfeasible when problems have deeper plan lengths yielding in most of the cases 
either to Time-Exceeded or Memory-Exceeded. We have to remark that Landmark count has shown a great computational 
time performance even in complex domains like Select, but the main limitation using this heuristic is memory because of 
its fast generation rate. Thus, LAMA-2011 setting is not the one with best performance but has shown great adaptability to 
every domain balancing exploration and generation rates, being the only one capable of generating every single planning 
program.
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5. Planning programs with procedures

In this section we extend basic planning programs with procedures. Intuitively, a procedure is itself a planning program. 
For procedures to interact, we introduce call instructions that allow procedures to call other procedures. The section also 
introduces two other extensions to basic planning programs: variables and procedural arguments. We prove that the theoret-
ical properties of planning programs remain the same when procedures are allowed, and extend the compilation for basic 
planning programs to include procedures.

5.1. Extending planning programs with procedures

Given a classical planning frame � = 〈F , A〉, a planning program with procedures is a pair � = 〈
, L〉 where:

• 
 = {�0, . . . , �m} is a set of planning programs defined in � = 〈F , A〉.
• L ⊆ F is a subset of local fluents.

The instruction set I is extended to include procedure calls

I = A ∪ Igo ∪ {end } ∪ Icall, Icall = {call(j’) : 0 ≤ j′ ≤ m},
where Icall is the set of call instructions, allowing any procedure to call any other procedure on an arbitrary program line. We 
adopt the convention of designating procedure �0 as the main program, and {�1, . . . , �m} as the set of auxiliary procedures. 
We define |�| = |�0| + · · · + |�m|, i.e. |�| is the total number of program lines of all procedures.

To define the execution model for planning programs with procedures we first introduce the notion of a call stack that 
keeps track of where control should return when the execution of a procedure terminates. In addition each procedure has a 
local state defined on the set of local fluents L. Given L, each state s can be partitioned as s = sg ∪ sl , where sg = s|F\L is the 
global state and sl = s|L is the local state. Each element of the call stack is a tuple ( j, i, sl), where j is an index that refers 
to a procedure � j , 0 ≤ j ≤ m, i is a program line, 0 ≤ i ≤ |� j|, and sl is a local state. In what follows we use � ⊕ ( j, i, sl)

to denote a call stack recursively defined by a call stack � and a top element ( j, i, sl). To ensure that the execution model 
remains bounded we impose an upper bound � on the size of the call stack.

The execution model for a planning program with procedures consists of a program state (sg, �), where sg is a global 
state and � is a call stack. Given a program state (sg , � ⊕ ( j, i, sl)), the execution of instruction w j

i on line i of procedure 
� j is defined as follows:

• If w j
i ∈ A, the new program state is (s′|F\L, � ⊕ ( j, i + 1, s′|L)), where s′ = θ(sg ∪ sl, w

j
i ) is the state resulting from 

applying action w j
i in state s = sg ∪ sl and s′|F\L and s′|L are the corresponding global and local states. Just as in the 

execution model for basic programs, the program line i is incremented.
• If w j

i = goto(i’,!f), the new program state is (sg , � ⊕ ( j, i + 1, sl)) if f ∈ sg ∪ sl and (sg , � ⊕ ( j, i′, sl)) otherwise. 
The only effect is changing the program line, and a jump only occurs if f is false, like in the execution model for basic 
programs.

• If w j
i = call(j’), the new program state is (sg , � ⊕ ( j, i + 1, sl) ⊕ ( j′, 0, ∅)). In other words, calling a procedure � j′

has the effect of (1) incrementing the program line i at the top of the stack; and (2) pushing a new element onto the 
call stack to start the execution of the new procedure � j′ on line 0 with an empty local state.

• If w j
i = end, the new program state is (sg , �), i.e. a termination instruction has the effect of terminating a procedure 

by popping element ( j, i, sl) from the top of the call stack. The execution of a planning program with procedures does 
not necessarily terminate when executing an end instruction. Instead, execution terminates when the call stack becomes 
empty, i.e. in program state (sg , ∅).

To execute a planning program with procedures � on a planning problem P = 〈F , A, I, G〉, we set the initial program 
state to (I|F\L, (0, 0, I|L)), i.e. the initial state of P is partitioned into global and local states and execution is initially on 
program line 0 of the main program �0. We assume that the goal condition G is completely defined on the set of global 
fluents F \ L and we say that � solves P if and only if execution terminates and the goal condition holds in the resulting 
program state, i.e. (sg, ∅) ∧ G ⊆ sg . As a consequence of the bound � on the size of the call stack, there is now a fourth 
reason why a planning program with procedures may fail to solve a generalized planning problem:

4. Execution does not terminate because, when executing a call instruction call(j’) in program state (sg , �), the size 
of � equals �, i.e. |�| = �.

Executing such a procedure call would result in a call stack whose size exceeds the upper bound �, i.e. a stack overflow. The 
extended execution model is still deterministic, so a planning program with procedures can again be viewed as a form of 
compact reactive plan for the class of planning problems defined by the corresponding generalized planning task.
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�0: 0. call(1) �1: 0. dec(x) �3: 0. inc(y)

I

1. call(2) 1. goto(0,!(x=1)) 1. goto(0,!(y=n))
2. call(3) 2. dec(y) 2. end
3. call(4) 3. goto(2,!(y=1))
4. end 4. end

�2: 0. inc(x) �4: 0. dec(x)
1. goto(0,!(x=n)) 1. goto(0,!(x=1))
2. end 2. end

(a) (b)

Fig. 4. Planning program with procedures 〈{�0, . . . , �4}, ∅〉 for visiting the four corners of an n × n grid (�1 is also defined in Fig. 2) and an execution 
example of the program in a 5 × 5 grid starting from cell (4, 3).

Fig. 4(a) shows an example planning program with procedures 〈{�0, . . . , �4}, ∅〉 for visiting the four corners of an n × n
grid starting from any initial position in the grid. Variables x and y that represent the agent position in the grid are global, 
and there are no local fluents, i.e. s|F\L = s and s|L = ∅ for every state s. Procedure �1 refers to the basic planning program 
defined in Fig. 2, �2 is a procedure for reaching the last column of an n × n grid, �3 is a procedure for reaching the last 
row of an n × n grid and �4 is a procedure for reaching the first column.

To allow for arbitrary grid sizes, we define derived fluents x = n and y = n whose values are true if the agent is currently 
in the last column or row, respectively. The PDDL definition in Appendix A illustrates this idea: fluent max-value(x,v5)
indicates that the maximum value in the domain of variable x is 5, and the derived fluent is-max(x) is true precisely 
when the current assignment to x equals the maximum value. The conditional effect of action inc(x) does not trigger if
is-max(x) is true, i.e. if the value of x is already maximal. Fig. 4(b) shows an example execution of the program on a 
planning problem whose initial state places the agent at position (4, 3).

5.2. Planning programs with procedural arguments

In this section we take advantage of variable representation to extend procedure calls with arguments. Procedural ar-
guments make it possible to reduce the size of programs and to represent compact plans for tasks that demand recursive 
solutions.

Defining actions on variables is mostly a matter of problem representation. As already mentioned in Section 3, we assume 
that the fluents of a classical planning frame � = 〈F , A〉 are instantiated from a set of predicates � and a set of objects �. 
We now introduce the additional assumption that there exists a predicate assign(v, x) ∈ � and that � is partitioned into 
two sets �v (the variable objects) and �x (the value objects). Intuitively, a fluent assign(v, x), v ∈ �v and x ∈ �x , is true if 
and only if x is the value currently assigned to the variable v . A given variable represents exactly one value at a time, so 
for a given v , fluents assign(v, x), x ∈ �x , are mutex invariants (only one is true at any moment). All other predicates in �
are instantiated on value objects in �x only.

Let K = {assign(v, x) : v ∈ �v , x ∈ �x} be the subset of fluents induced by the predicate assign. Given a planning program 
with procedures � = 〈
, L〉, we assume that K ⊆ L, i.e. that all fluents in K are local. Furthermore, to each procedure 
� j ∈ 
, 0 ≤ j ≤ m, we associate an arity ar( j) and a parameter list 
( j) ∈ �

ar( j)
v consisting of ar( j) variable objects. We 

also redefine the set of procedure calls as

Icall = {call(j’,ω) : 0 ≤ j′ ≤ m,ω ∈ �
ar( j′)
v },

where ω is the list of ar( j′) variable objects passed as arguments when calling procedure � j′ .
The execution model for planning programs with procedural arguments (including the conditions for termination, success

and failure) is inherited from the execution model previously defined for planning programs with procedures. The only term 
that has to be redefined is the execution of a procedure call instruction with arguments:

• If w j
i = call(j’,ω) and the current program state is (sg , � ⊕ ( j, i, sl)), then the new program state is (sg , � ⊕ ( j, i +

1, sl) ⊕ ( j′, 0, s′
l)) where the local state s′

l is obtained as follows. For each value object x ∈ �x and each z, 1 ≤ z ≤ ar( j′), 
we set assign(
( j′)z, x) to true if and only if assign(ωz, x) is true in sl . This has the effect of copying the value of 
variable ωz onto its corresponding variable 
( j′)z in the parameter list of procedure � j′ .

Fig. 5 shows a planning program with two parameterized procedures, �1(aux) and �2(aux), for visiting the four 
corners of an n × n grid, the same navigation problem introduced in Fig. 4. In this particular example the set of vari-
able objects is �v = {x, y, aux} while the set of value objects depends on the size of the grid, e.g. for a 5 × 5 grid 
�x = {1, 2, 3, 4, 5}. Both auxiliary procedures have one argument, i.e. their arity is 1. Moreover, both have the same pa-
rameter list 
(�1) = 
(�2) = [aux]. Since each stack level has a separate fluent set, variables in the parameter lists can 
be reused for different procedures and procedure calls, like in Fig. 5 where the variable named aux is used for the two 
different auxiliary procedures �1(aux) and �2(aux). Compared to the program of Fig. 4, this new program with procedural 
arguments is significantly more compact.
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�0 : 0. call(1,x) �1(aux) : 0. dec(aux)
1. call(1,y) 1. goto(0,!(aux=1))
2. call(2,x) 2. end
3. call(2,y)
4. call(1,x) �2(aux) : 0. inc(aux)
5. end 1. goto(0,!(aux=n))

2. end

Fig. 5. Planning program with two parameterized procedures for visiting the four corners of an n × n grid starting from any initial cell. Procedure �1(aux)
decrements variable aux until reaching value 1 while �2(aux) increments aux until reaching value n.

5.3. Theoretical properties of planning programs with procedures

In this section we prove that plan validation and plan existence are still PSPACE-complete for planning programs with 
procedures. Hence including procedures in planning programs does not increase the worst-case complexity of the related 
decision problems, as long as we bound the size of the call stack.

We extend the two decision problems from Section 4 to the class PP-P of planning programs with procedures.

VAL(PP-P) (plan validation for planning programs with procedures)
Instance: A planning problem P = 〈F , A, I, G〉, a planning program � ∈ X and an integer �.
Question: Does � solve P using a call stack of size no more than �?

BPE(PP-P) (bounded plan existence for planning programs with procedures)
Instance: A planning problem P = 〈F , A, I, G〉 and integers �, m and n.
Question: Does there exist a planning program � ∈ X with at most m procedures and n program lines that
solves P using a call stack of size no more than �?

Theorem 6. VAL(PP-P) is PSPACE-complete.

Proof. Membership: Similar to the proof for basic planning programs, we can use the execution model to check whether 
a planning program with procedures � solves a planning problem P using a call stack of size no more than �. To store a 
program state (sg, �) we need |F | − |L| + �(log m + log n + |L|) space: |F | − |L| space to store the global state sg ∈ F \ L, and 
logm + log n + |L| space to store each element ( j, i, sl) of the call stack, with a maximum of � such elements. Processing 
an instruction and testing preconditions and the goal condition can be done in polynomial time and space. Testing whether 
we exceed the size of the call stack is also trivial given the current program state and instruction. To check whether 
execution enters into an infinite loop, we can maintain a count of the number of instructions processed, and report failure 
if this count exceeds the total number 2|F |−|L| + (mn2|L|)� of possible program states. Maintaining this count also requires 
|F | − |L| + �(log m + log n + |L|) space, which is polynomial in P , � and �.

Hardness: We show that there is a polynomial-time reduction from VAL(PP) to VAL(PP-P). Given a planning problem 
P = 〈F , A, I, G〉 and a basic planning program �, construct a planning program with procedures �′ = 〈{�}, F 〉, i.e. �′ has a 
single procedure that acts as the main program and is equal to �, and the set of local fluents is L = F . Since � is a basic 
planning program it contains no recursive calls to itself, so a call stack of size � = 1 is sufficient to execute �′ . Since � is 
the main program of �′ , �′ solves P if and only if � solves P . Since VAL(PP) is PSPACE-complete due to Theorem 1, this 
implies that VAL(PP-P) is PSPACE-hard. �
Theorem 7. BPE(PP-P) is PSPACE-complete for � ≥ 1, m ≥ 1 and n ≥ 2.

Proof. Membership: Non-deterministically guess a planning program with procedures � with m procedures and n program 
lines. Due to Theorem 6, validating whether � solves P using a call stack of size at most � is in PSPACE. Hence the overall 
procedure is in NPSPACE = PSPACE.

Hardness: By reduction from BPE(PP). Namely, there exists a basic planning program � with n program lines that solves 
P if and only if there exists a planning program with procedures �′ = 〈{�}, F 〉 that solves P using a call stack of size � = 1, 
where �′ has m = 1 procedures. Since BPE(PP) is PSPACE-complete for n ≥ 2, this implies that BPE(PP) is PSPACE-hard for 
� ≥ 1, m ≥ 1 and n ≥ 2. �

We remark that although there is no complexity theoretic benefit of extending planning programs with procedures, in 
practice decomposing a planning program into procedures often results in more compact solutions easier to be computed 
by planners. Procedures also make it possible to decompose a problem into sub-problems, compute a separate planning 
program for each sub-problem and reuse them at different problems.
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5.4. Computing programs with procedures

In this section we extend the compilation from Section 4 with procedures, implementing the procedure call mechanism 
with a finite-size stack that can be modeled in PDDL and that is inspired by the compilation of fault tolerant planning into 
classical planning [48]. Our finite-size stack is a pair 〈L, �〉 where L ⊆ F is the subset of local fluents, i.e., fluents that can be 
allocated in the stack, and � is the maximum number of levels in the stack. Implicitly this stack model defines:

• A set of fluents L� = { f l : f ∈ L, 1 ≤ l ≤ �} that contains replicas of the fluents in L parameterized with the stack level l. 
These fluents represent the � partial states that can be stored in the stack.

• A set of fluents F �
top = {topl}0≤l≤� representing which is the top level of the stack at the current time.

• Actions pushQ and pop that are the canonical stack operations, with pushQ pushing a subset of stackable fluents Q ⊆ L
to the top level of the stack and pop popping any fluent in L from the top level of the stack.

To compute programs with callable procedures we extend our compilation with new local fluents representing 1) the 
current procedure; 2) the current program line of the procedure; and 3) the local state of the procedure. We also add new 
actions that implement programming and execution of procedure call instructions as well as termination instructions for the 
procedures. Intuitively the execution of a procedure call instruction pushes onto the stack the current procedure, the program 
line and the local state. Likewise the execution of a termination instruction pops all this information from the stack.

As a first step we detail the compilation for computing programs with procedures without arguments, and then we 
explain the extension of the compilation to deal with procedural arguments. Formally the new compilation takes as input 
a generalized planning problem P = {〈F , A, I1, G1〉, . . . , 〈F , A, IT , G T 〉} and three bounds n, m and � and outputs a classical 
planning problem P �

n,m = 〈F �
n,m, A�

n,m, I�n,m, G�
n,m〉. Here, n bounds the number of lines for each procedure, m bounds the 

number of procedures and � bounds the stack size.
Given the planning problem Pt , 1 ≤ t ≤ T , let It,g = It ∩ (F \ L) be the initial global state of Pt , and let I1

t,l = { f 1 : f ∈
It ∩ L} be the initial local state of Pt encoded on level l = 1 of the stack. The planning problem P �

n,m is defined as follows:

• F �
n,m = (F \ L) ∪ L� ∪ F �

top ∪ F �
pc ∪ F m

ins ∪ Ftest ∪ {done} where

– F �
pc contains the local fluents for indicating the current line and procedure executed. Formally, F �

pc = {pcl
i : 0 ≤ i ≤

n, 1 ≤ l ≤ �} ∪ {procl
j : 0 ≤ j ≤ m, 1 ≤ l ≤ �}.

– F m
ins encodes the instructions of the main and auxiliary procedures. In other words, the same fluents Fins defined 

for the previous compilation but parametrized with the procedure id, plus new fluents that encode call instructions: 
F m

ins = {insi, j,w : 0 ≤ i ≤ n, 0 ≤ j ≤ m, w ∈ A ∪ Igo ∪ Icall ∪ {nil, end}}.
• The initial state sets all the program lines (main and auxiliary procedures) as empty and sets the procedure on stack 

level 1 to 0 (the main procedure) with the program counter pointing to the first line of that procedure. The initial 
state on fluents in F is I1, hence I�n,m = I1,g ∪ I1

1,l ∪ {insi, j,nil : 0 ≤ i ≤ n, 0 ≤ j ≤ m} ∪ {top1, pc1
0, proc1

0}. As before, the goal 
condition is defined as G�

n,m = {done}.
• The actions are defined as follows:

– For each instruction w ∈ A ∪ Igo , an action wl
i, j parameterized not only on the program line i but also on the 

procedure j and stack level l. Let wl
i be the corresponding action defined in Section 4.3 with superscript l added to 

all program counters and local fluents. Then wl
i, j is defined as

pre(wl
i, j) = pre(wl

i) ∪ {topl,procl
j},

cond(wl
i, j) = cond(wl

i).

Note that these actions do not alter the call stack.
– For each call instruction call(j’) ∈ Icall , an action call j′,l

i, j also parameterized on i, j and l, 1 ≤ l < �:

pre(call j′,l
i, j ) = {pcl

i, insi, j,call( j′), topl,procl
j}, (1)

cond(call j′,l
i, j ) = {∅ � {¬pcl

i,pcl
i+1,¬topl, topl+1,pcl+1

0 ,procl+1
j′ }}. (2)

Note that the effect is to push a new program line ( j′, 0) onto the stack. Also note that j = j′ implies a recursive call.
– An action endl+1

i, j that simulates the termination on line i of procedure j on stack level l + 1, 0 ≤ l < �:

pre(endl+1
i, j ) = {pcl+1

i , insi, j,end, topl+1,procl+1
j },

cond(endl+1
i, j ) = {∅ � {¬pcl+1

i ,¬topl+1,¬procl+1
j , topl},∅ � {¬ f l+1 : f ∈ L}}.

Note that the effect is to pop the program line ( j, i) from the stack, deleting all local fluents.
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• As before, the action set A�
n,m is composed of the program action P (wl

i, j) and repeat action R(wl
i, j) for each action wl

i, j
defined above.

• For each planning problem Pt , 1 ≤ t ≤ T , we also need a termination action termt that simulates the successful termi-
nation of the planning program on Pt when the stack is empty:

pre(termt) = Gt ∪ {top0}, t < T ,

cond(termt) = {∅ � I1
t+1,l ∪ {¬top0, top1,pc1

0,proc1
0}} ∪ {{¬ f } � { f } : f ∈ It+1,g}

∪ {{ f } � {¬ f } : f /∈ It+1,g}, t < T ,

pre(termT ) = G T ∪ {top0},
cond(termT ) = {∅ � {done}}.

Note that the effect of termt , t < T , is to reset the program state to the initial state of problem Pt+1.

Now we define the extension to our compilation for programming and executing parameterized calls to procedures. Apart 
from the program counter and the current procedure, a procedure call with arguments also pushes onto the stack the 
arguments of the call. Formally the classical planning task P �

n,m that results from the compilation is extended as follows:

• We assume that there exists a new set of local fluents {assign(v, x) : v ∈ �v , x ∈ �x} ⊆ L that encode assignments of 
type v = x.

• The actions for programming a call instruction are redefined to indicate not only the called procedure but also the 
specific values passed to that procedure. To define the actions that execute a call to procedure j′ passing a list of 
parameters we use the actions call j′,l

i, j defined in Equations (1) and (2). For each variable combination �( j′) ∈ �
ar( j′)
v , we 

introduce a new action call j′,l
i, j �( j′) formulated as:

pre(call j′,l
i, j �( j′)) = pre(call j′,l

i, j ),

cond(call j′,l
i, j �( j′)) = cond(call j′,l

i, j )

∪ {{assignl(vq, x)} � {assignl+1(uq, x)} : vq ∈ �( j′), x ∈ �x, uq ∈ 
( j′),1 ≤ q ≤ |
( j′)|}.
In other words, call j′,l

i, j �( j′) has the effect of copying the value of each variable vq ∈ �( j′) on level l of the stack to the 

corresponding local variable uq ∈ 
( j′) on level l + 1 of the stack. Recall that 
( j′) ∈ �
ar( j′)
v is the parameter list of 

procedure j consisting of ar( j′) variable objects.

We formally prove several properties of the extended compilation for planning programs with procedures. In particular, 
we show that the compilation is sound and complete and prove a bound on the compilation size.

Theorem 8 (Soundness). Any plan π that solves P �
n,m induces a planning program with procedures � that solves P .

Proof. The proof is very similar to the proof of Theorem 3. Whenever the current program line of a procedure is empty, π
has to program an instruction on that line, else repeat execution of the instruction already programmed on that line. Hence 
the fluent set F m

ins implicitly induces a planning program with procedures �.
Although the execution model is more complicated than for basic planning programs, the repeat actions of P �

n,m precisely 
implement the execution model for planning programs with procedures. Hence the plan π has the effect of simulating the 
execution of � on each planning problem in P . To solve P �

n,m , the goal condition Gt has to hold for each problem Pt ∈ P , 
proving that � solves P . �
Theorem 9 (Completeness). If there exists a planning program with procedures � that solves P such that 1) � contains at most m
auxiliary procedures; 2) each procedure of � contains at most n program lines; and 3) executing � on the planning problems in P
does not require a call stack whose size exceeds �, then there exists a plan π that solves P �

n,m.

Proof. Construct a plan π by always programming the instruction indicated by �, and repeatedly simulate the execution of 
� on the planning problems in P , terminating when the stack becomes empty. Since � solves P and fits within the given 
bounds, the plan π constructed this way is guaranteed to solve P �

n,m . �
The extended compilation adds a new source of incompleteness. The bound � on the stack size limits the depth of nested 

procedure calls which can also make P �
n,m unsolvable. For example, a program that implements the recursive version of DFS, 
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needs at least � ≥ 3 stack levels for solving the problem of visiting all the nodes of a tree with depth 3 without causing a 
stack overflow.

Theorem 10 (Size). Given a generalized planning problem P = {P1, . . . , P T } on a planning frame � = 〈F , A〉, a subset L ⊆ F of local 
fluents and bounds �, m and n, the size of the compiled problem P �

n,m = 〈F �
n,m, A�

n,m, I�n,m, G�
n,m〉 is given by |F �

n,m| = O (�(|L| + m +
n) + mn(|A| + |F | + m + n) + T ) and |A�

n,m| = O (�mn(|A| + |F | + m + n + T )).

Proof. By inspection of the fluent set F �
n,m and the action set A�

n,m . The set F �
n,m is defined as (F \ L) ∪ L� ∪ F �

top ∪ F �
pc ∪

F m
ins ∪ Ftest ∪ {done}. The collective size of L� ∪ F �

top ∪ F �
pc equals (� + 1)(|L| + 1 +n + 1 +m + 1) = O (�(|L| +m +n)). The size 

of F m
ins equals O (mn(|A| + |F | + m + n)), where the term m2n is due to call instructions and we have used the optimization 

for goto instructions from Section 4. The action set A�
n,m defines the same instructions as before, plus call instructions, for 

a total of |A| + |F | + n + 1 + T + m + 1. There are �mn copies of each such instruction, one per stack level, procedure and 
program line, and two versions that program and repeat an instruction, for a total of 2�mn(|A| + |F | + n + 1 + T + m + 1) =
O (�mn(|A| + |F | + m + n + T )). �

Compared to the compilation for basic planning programs, the number of actions increases approximately by a factor of 
�m, which is to be expected since actions are parameterized on the procedure and stack level.

The benefit of extending the compilation with procedure calls comes from:

1. Representing solutions compactly using procedural arguments and recursion. An example is our program generated for 
DFS traversing binary trees whose depth does not exceed the size of the call stack. A classical plan for this task consists 
of an action sequence whose length is linear in the number of tree nodes, and hence exponential in the depth of the 
tree. In contrast, a recursive definition of Depth-First Search (DFS) only requires a 6-line program, as reported in the 
experiments below.

2. Reusing existing programs as auxiliary procedures. If auxiliary procedures are provided, the only instructions that a plan 
has to program are those of the main program �0. Reducing the number of empty program lines decreases the number 
of possible planning programs and hence the number of applicable actions. In the experiments below we computed the 
planning program of Fig. 4 given the four auxiliary procedures �1, �2, �3 and �4.

The final benefit of including a given auxiliary procedure is contingent on how much the reused procedure contributes 
to solving the overall problem. A key issue for effectively reusing existing programs as auxiliary procedures is how to 
generate auxiliary procedures that are helpful to solve a given generalized planning task. One option is for a domain expert 
to hand-craft auxiliary procedures [8], and this might be the best choice if such knowledge is readily available. However, 
since each procedure is indeed a program of its own, we can use our compilation to compute each of these program from 
examples (albeit without auxiliary procedures). For instance, to compute the auxiliary procedure �1 for navigating to the 
(0, 0) position (see Fig. 2), we defined a generalized planning problem P1 by generating individual planning problems 
with different initial states whose goal condition is to be at position (0, 0). We then used the compilation from Section 4
to generate a basic planning program �1 that solves P1. Similarly, we generated programs �2, �3, �4 for reaching the 
other three corners of a grid. We then designated these programs as procedures �1, . . . , �4 of a planning program with 
procedures.

To incrementally compute and reuse auxiliary procedures we need to assume the existence of a specific decomposition 
of the overall problem into a set of subtasks, and appropriately extend the definition of a generalized planning problem. 
A similar assumption is done in Hierarchical Goal Network (HGN) planning where a network of subgoals is specified to 
boost the search of a hierarchical planner [49]. An interesting open research direction is to automatically discover these 
decompositions of planning problems and previous work on the automatic generation of planning hierarchies [50,51] is a 
good starting point to address this research question.

5.5. Experiments

We perform two sets of experiments for planning programs with procedures, corresponding to plan generation and plan 
validation. Most domains used in the experiments are the same as in our previous work [10]. In GreenBlock, the aim is to 
find and collect a green block in a tower of blocks. In Fibonacci, the aim is to compute the n-th number in the Fibonacci 
sequence. In Gripper, the aim is to move all balls from one room to the next. In Hall-A, the aim is to visit the four corners 
of a grid (cf. Fig. 5). In Sorting, the aim is to sort the elements of a vector. In Trees, the aim is to visit all the nodes of a 
given binary tree. In Visit-all, the aim is to visit all cells of a grid. Finally, in Visual-M, the aim is to find a marked block in a 
configuration of multiple towers of blocks.

We also introduce a novel domain called Excel, inspired by the Flash Fill feature of Microsoft Excel to automatically pro-
gram macros from examples. There are five problems in this domain: 1) add a parenthesis at the end of a word; 2) extract 
the number of seconds from a timer in the MM:SS.HH format (minutes, seconds and hundredths of a second); 3) given name 
and surname strings, form a single string formatted as surname, space and name; 4) given name and surname strings, form 
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Table 6
Plan generation for planning programs with procedures. Number of procedures; for each procedure: program lines, instances, stack size, fluents, actions, 
search time, preprocessing time; total time (in seconds) elapsed while computing the overall solution.

Proc Lines Inst Stack Fluents Actions Search(s) Preprocess(s) Total(s)

GreenBlock 2 (4,3) (6,5) (2,2) (306,250) (932,559) (0.90,0.04) (2.63,0.53) 4.10
Excel-1 2 (3,2) (2,1) (2,2) (4167,4265) (11517,11838) (3.16,0.53) (2.92,3.14) 9.75
Excel-2 2 (3,2) (2,1) (2,2) (4167,3282) (11517,6122) (3.23,0.24) (2.92,5.53) 11.92
Excel-3 2 (3,3) (2,1) (2,2) (4167,7301) (11517,20538) (3.09,5.29) (2.92,8.64) 19.94
Excel-4 2 (3,3) (2,1) (2,2) (4167,7301) (11517,20538) (3.13,328.41) (2.83,8.54) 342.91
Excel-5 2 (3,3) (2,1) (2,2) (4167,7301) (11517,20538) (3.09,0.64) (2.94,8.63) 15.30
Fibonacci 2 (3,3) (2,4) (2,2) (321,341) (579,607) (1.01,1.48) (1.03,1.42) 4.94
Gripper 3 (3,3,3) (2,2,2) (2,2,2) (305,307,403) (651,665,859) (0.05,0.04,1.06) (0.34,0.38,0.62) 2.49
Hall-A 5 (5,5, (2,2, (2,2, (1029,1041, (3925,3951, (86.77,69.18,100.97, (1.06,1.16, 1069.12

5,5,4) 2,2,2) 2,2,2) 1053,1065,888) 3977,4003,2624) 350.23,455.73) 1.32,1.43,1.27)
Sorting 2 (4,4) (4,3) (2,2) (556,549) (1988,1779) (11.56,11.55) (1.94,3.86) 28.91
Trees 1 6 1 4 638 4164 154.76 1.09 155.85
Visit-all 3 (3,2,4) (2,2,2) (2,2,2) (801,582,816) (1911,879,2569) (0.22,0.04,24.70) (0.54,0.38,0.79) 26.67
Visual-M 3 (4,4,4) (4,2,5) (2,2,2) (274,238,279) (724,649,650) (0.38,0.03,5.90) (2.22,0.42,3.30) 12.25

0. call(1) 0. pick-left 0. drop-left
1. call(2) 1. pick-right 1. drop-right
2. goto(0,!(no-balls-in-rooma)) 2. move 2. move
3. end 3. end 3. end

(a) �0: pick up and drop balls until none left (b) �1: pick up balls (c) �2: drop balls

Fig. 6. Program with procedures for the Gripper.

a string with the name, space and the first letter of the surname; and 5) given name and surname strings, form a string 
with first letter of the name, a space and the first letter of the surname.

Again we can represent different generalized planning tasks using the same planning frame � = 〈F , A〉. For example, 
instances of Triangular and Fibonacci are represented using the Variables PDDL domain that include operators to increment 
or decrement variables, add the value of a variable to another, and assign the value of a variable to another. Likewise, the 
instances of the Hall-A and Visit-all tasks are represented using a generic Grid domain that includes operators for visiting
cells and moving one cell, in any cardinal direction. All Excel instances are also represented using the same PDDL domain.

In each domain, except for Trees whose solution comprises just one procedure, plan generation proceeds in several steps. 
We manually decompose the overall problem into two or more subproblems. For each subproblem we provide a separate 
generalized planning problem whose instances correspond to that subproblem. For example, in Sorting the subproblem is to 
select the minimum element from a vector, and for each instance there is a pointer that starts at the first position of the 
vector, and the goal condition is to bring the pointer to the minimum element. In Trees, the problem is not decomposed, 
but the resulting main program makes recursive calls to itself, so the call stack is still needed to solve the problem.

Let P0, . . . , Pk be the sequence of generalized planning problems, where P0 corresponds to the overall problem we 
want to solve. For each problem P j in decreasing order of j (k, k − 1, . . .), we generate a planning program � j that solves 
P j . While doing so, the programs � j+1, . . . , �k are included as auxiliary procedures. In other words, only the lines of the 
main program are empty, and the remaining programs are encoded as part of the initial state. Hence generating the program 
� j amounts to programming the instructions of the main program, which can include calls to the auxiliary procedures, and 
then executing the program to ensure it solves P j . Also note that the number of procedures increases for each subproblem, 
such that �k has no auxiliary procedures, while �0 uses all the other programs �2, . . . , �k as auxiliary procedures.

Table 6 reports the plan generation results. Compared to Table 1, we added bounds on the number of procedures and 
stack size. Since subproblems are solved separately, each procedure corresponds to a separate call to the classical planner. 
For each procedure, we therefore report the number of program lines, number of instances, stack size, number of fluents, 
number of actions, search time, and preprocessing time. We also report the total time to solve all subproblems related to a 
domain. Times are reported in seconds.

As an illustration, we show four of the obtained programs. The solution to Gripper appears in Fig. 6. In �1 the agent 
picks up balls with both grippers and moves to the second room. In �2 the agent drops both balls and moves back to the 
first room. �0 makes repeated calls to �1 and �2 until there are no balls left in the first room. Note that we changed 
the representation of the Gripper domain in order to generalize: instead of representing individual balls, we represent the 
number of balls in each room, and the conditional effect of actions such as pick-left is to decrement the number of 
balls in the current room of the robot.

The solution to Sorting appears in Fig. 7 and corresponds to the selection sort algorithm. There are four pointers:
itermax, pointing to the tail of the vector; outer, indicating the start position in every loop; inner, iterating from
outer to itermax in each loop; and mark, pointing to the minimum element found so far in each loop. Procedure �1

repeatedly increments inner, and assigns inner to mark if its content is the smallest found so far. Procedure �0 re-
peatedly calls �1 to select the minimum element (stored in mark), and then swaps the contents of outer and mark. We 
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0. call(1) 0. inc-pointer( inner )
1. swap( *mark, *outer ) 1. goto( 3, !( lt( *inner, *mark ) ) )
2. inc-pointer( outer ) 2. assign( mark, inner )
3. goto( 0, !( eq( inner, itermax ) ) ) 3. goto( 0, !( eq( inner, itermax ) ) )
4. end 4. end

(a) �0: repeatedly select minimum value and swap contents (b) �1: select minimum value from current position outer

Fig. 7. Program with procedures for Sorting.

0. visit( current )
1. copy-left( child, current )
2. goto( 6, !( isinternal( current ) ) )
3. copy-right( current, current )
4. call( 0, child )
5. call( 0, current )
6. end

Fig. 8. Recursive program for Trees.

0. append-str(res,str-var) 0. call(1,str-var) 0. get-substr(str-var,’:’,’.’)
1. inc-loindex(str-var) 1. append-char(res,’)’) 1. call(1,str-var)
2. goto(0,!(empty(str-var))) 2. end 2. end
3. end

(a) �1: copy substring of str-var to res (b) �(0,E−1): append ’)’ to a string (c) �(0,E−2): get the seconds from a timer

0. call(1,surname-var) 0. call(1,name-var) 0. append-str(res,name-var)
1. append-char(res,’ ’) 1. append-char(res,’ ’) 1. append-char(res,’ ’)
2. call(1,name-var) 2. append-str(res,surname-var) 2. append-str(res,surname-var)
3. end 3. end 3. end

(d) �(0,E−3): copy surname, space and name (e) �(0,E−4): copy name, space and initial (f) �(0,E−5): copy space-separated initials

Fig. 9. Planning programs for Excel, where �1 is a common procedure.

remark that the action inc-pointer(outer) on line 2 has the secondary effect of setting the pointer inner equal to
outer; this is the reason why line 3 refers to inner instead of outer.

In Trees, there are two variables current and child that point to nodes of the tree. Fig. 8 shows the resulting 
planning program. The program first visits the current node and copies the left child of the current node to child. In 
case the current node is a leaf (i.e. not internal) execution finishes, else the right child of the current node is copied to
current. Then the program makes two recursive calls to itself for each of the two variables child and current. In this 
way it visits all the tree nodes in a depth-first search fashion.

The programs for Excel are shown in Fig. 9. Each string has two indices lo and hi. Each of the five Excel tasks share 
the same procedure �1 which is parameterized on a string str-var and copies all characters of str-var between lo
and hi to another string res. Program �(0,E−1) calls �1 and then appends a right parenthesis. Program �(0,E−2) selects 
the substring between ’:’ and ’.’ by setting the two indices appropriately before copying. Program �(0,E−3) first copies the 
surname, then appends a space character, and then copies the name. Program �(0,E−4) copies the name and then appends 
a space character and the first letter of the surname. Finally, program �(0,E−5) appends the first character of the name and 
surname with a space character in between.

With respect to the results reported in our previous work [10], the performance in Fibonacci is better. Now we need 
one less instance to generalize, the 5th number in the Fibonacci sequence. On the contrary, the performance in Hall-A and 
Visit-all is worse since we implemented them on a common generic PDDL domain Grid.

Like in Section 4, we ran a second set of experiments in which we validated the generated programs. In GreenBlock, we 
tested the planning program on a tower of 100 blocks where the green block was the third starting from the bottom. In 
Excel we used the name “MAXIMILIAN” and surname “FEATHERSTONEHAUGH” for problems [3, 5], and the same surname 
in problem 1. In Problem 2 the given timer was 01:59.23. In Fibonacci, we tested the program on the 6th Fibonacci number. 
In Gripper, the test consisted in moving 30 balls to the next room. In Hall-A, the agent had to visit the four corners of a 
100 × 100 grid. In Sorting, the test was to sort a vector of 50 random elements. In Trees, we tested the program on a binary 
tree with 20 nodes and maximum depth 8. In Visit-all, all cells of a 30 × 30 grid must be visited. Finally, in Visual-M, the 
agent had to process 10 towers with maximum height 10, with the marked block in the last tower.

Table 7 presents the plan validation results obtained with the FD and BrFS planners. The reported data include the 
number of fluents and actions, total number of expanded states and the total time FD and BrFS needs to compute a solution. 
Results are obtained for two configurations: i) the instance that encodes the given planning program in the initial state 
(compiled tests); and ii) the classical domain and instance without using the planning program (classical tests). This way, 
we can compare how hard it is to solve a given classical planning instance compared to validating a planning program on 
the instance (i.e. using the program as control knowledge). As before, Time-Exceeded (TE) indicates that no solution was 
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Table 7
Plan validation for planning programs with procedures. In Compiled Tests, we compute the fluents, actions, expanded nodes and total time (in seconds) to 
obtain a plan for FD and BrFS. In Classical Tests, we compute the fluents, actions, expanded nodes and time taken by FD and BrFS to solve the instance 
without using the planning program.

Compiled tests Classical tests

F A Exp/T (FD) Exp/T (Brfs) F A Exp/T (FD) Exp/T (Brfs)

GreenBlock 421 14 401/3.40 501/3.05 404 3 198/1.63 591/1.38
Excel-1 352 10 76/0.57 94/0.57 433 56 70/0.60 -/ME
Excel-2 106 10 12/1.05 14/0.27 117 56 4/0.13 379/0.17
Excel-3 640 11 114/1.42 141/1.45 798 106 256/3.53 -/ME
Excel-4 450 11 45/1.24 55/1.31 558 106 44/1.69 /ME
Excel-5 347 4 4/0.74 4/0.81 486 106 3/1.34 164/0.38
Fibonacci 71 11 -/TE 55/0.35 56 8 -/TE 17337/0.48
Gripper 206 15 181/0.92 196/0.66 158 5 172/0.77 -/ME
Hall-A 10226 46 1210/8.65 1609/7.39 10206 5 7797/2.75 -/TE
Sorting 2820 17 -/TE 9544/36.85 2803 4 -/TE -/TE
Trees 661 197 109/0.79 126/0.68 61 10 35/0.07 993304/8.54
Visit-all 1045 19 6511/8.13 8341/2.02 1029 5 -/TE -/TE
Visual-M 45 22 845/0.37 1146/0.35 27 5 45/0.02 161/0.08

found within the given time limit, Memory-Exceeded (ME) for no solved problems within the given memory limit, and the 
hyphen symbol (-) for no reported numbers related to TE or ME.

We see that in most domains, the planners are able to quickly compute a solution even in the absence of a planning 
program, sometimes even faster than when a planning program is provided. The reason of being faster without the compi-
lation is because some classical instances require less steps than compiled instances, and no matter how many objects the 
instance has if it can always be solved with few actions, thus the complexity on those domains is on generating programs 
but not on validating them. A similar situation is found when the actions to solve an instance, like in GreenBlock domain, 
are repetitive becoming an straight forward search in the classical instance so DCK only adds complexity. Also, FD spend all 
the alloted time in preprocessing for some domains like Fibonacci and Sorting where predicates with 2 or 3 arity like (sum 
v1 v2 v3) or (lessthan v1 v2) require to ground all value combinations, while a simple blind search is enough to 
get a plan. Remarkably in Sorting and Visit-all domains, no planner is able to solve the planning instance without the given 
planning program showing that DCK becomes important for complex domains where heuristic search is not helpful at all.

6. Non-deterministic planning programs

The planning program formalism, presented in Sections 4 and 5, unambiguously capture the action to apply next, for 
solving every instance in a given generalized planning task. Defining a planning program that is valid for multiple planning 
instances, while compact, may be complex and sometimes, even unfeasible (e.g. instances may not share a clear common 
structure and need to be treated separately).

An alternative approach is to compute solutions with non-deterministic execution, i.e. solutions with open segments that 
are only determined when executing the solution on a particular instance [8]. Programs with non-deterministic execution 
still constrain the space of possible solutions but requires a planner to produce a fully specified solution for a particular 
instance. This section introduces choice instructions and lifted action instructions, two different extensions of our planning 
program formalism to achieve generalization through non-deterministic execution. The section describes how to represent 
and compute planning solutions of this kind.

6.1. Planning programs with choice instructions

The first extension refers to choice actions that, inspired by let instructions from functional programming, assign a value 
to a variable in a generalized plan. Our approach closely follows that of Srivastava et al. who first introduced choice actions 
for generalized planning [4].

The extension is based on the formalism for planning programs with variables defined in Section 5: fluents F in a planning 
frame � = 〈F , A〉 are instantiated from a set of predicates � and a set of objects �. In addition, � is partitioned into 
variable objects �v and value objects �x and there exists a predicate assign(v, x) ∈ � such that v ∈ �v and x ∈ �x . With this 
defined, we can now extend the instruction set I with choice instructions:

Ichoice = {choose(ω, p) : ω ∈ �
ar(p)
v , p ∈ �}.

Given the current program state (s, i), the execution model for a choice instruction, choose(ω, p), is defined (for basic 
planning programs) as follows:

• If wi = choose(ω, p), the new program state is (s′, i + 1), where the new state s′ is constructed in two steps. The 
first step non-deterministically chooses x ∈ �

ar(p)
x such that p(x) ∈ s. The second step assigns x to ω making fluents 
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assign(ω j, x j), 1 ≤ j ≤ |ar(p)| true while making assign(ω j, y) false for each value object y �= x j . Other than this as-
signment, s′ is identical to s.

A choice instruction choose(ω, p) non-deterministically assigns a value object to each of the variable objects in ω. This 
assignment results from a unification of the predicate p with the current state s: given an assignment x ∈ �

ar(p)
x of value 

objects to the arguments of p such that the induced fluent p(x) is true in s, x is a valid assignment to ω, which we can 
represent using fluents assign(ω j, x j), 1 ≤ j ≤ |ar(p)|. In the literature, the arguments of a choice action are determined by 
evaluating a given first order formula [4], but we restrict this formula to a single predicate (the formula could however be 
extended to a conjunctive query following the ideas in Section 7).

The execution of a basic planning program with choice instructions introduces a fourth failure condition:

4. Execution does not terminate because, when executing a choose(ω, p) instruction, predicate p cannot be unified with 
the current state s, i.e. there does not exist x ∈ �

ar(p)
x such that p(x) ∈ s.

We illustrate the idea of a planning program with choice instructions using the well-known Blocksworld domain. The 
following planning program is able to solve any Blocksworld instance for which the goal is to put every block on the table. 
This task is more complex than unstacking a single tower of blocks, commonly solved by FSCs [2], because here there can be 
an arbitrary number of towers and each with different height. The only choice instruction 0.choose(v,clear) assigns 
a block object, that is currently clear, to the variable v capturing the key knowledge of the block to move next. This block 
is then unstacked and put down on the table. This process is repeated until all blocks are on the table (all-clear is a 
derived predicate that tests whether all blocks are clear, which is only possible if they are all on the table). This program 
assumes that the actions unstack(v) and putdown(v) are defined in terms of a variable object v rather than a block 
object (the latter is usually how the Blocksworld domain is modeled).

0. choose(v,clear)
1. unstack(v)
2. putdown(v)
3. goto(0,!(all-clear))
4. end

To compute planning programs with choice actions we extend the compilation explained in Section 4 for the computation of 
basic planning programs. For each choice instruction choose(ω, p) ∈ Ichoice , let choose

ω,p,χ
i be a classical planning action 

where χ ∈ �
ar(p)
x is a list of value objects that can be used to unify predicate p with the current state:

pre(choose
ω,p,χ
i ) ={pci, p(χ)},

cond(choose
ω,p,χ
i ) ={∅ � {¬pci,pci+1}}

∪ {∅ � {assign(vq,χq)} : vq ∈ ω,1 ≤ q ≤ |ar(p)|}
∪ {∅ � {¬assign(vq, x)} : vq ∈ ω, x ∈ �x, x �= χq,1 ≤ q ≤ |ar(p)|}.

The compilation is extended with two versions of the previous classical planning action, P(choose
p,ω,χ
i ), that is only appli-

cable on an empty line i and programs the corresponding choice instruction on that line, and R(choose
p,ω,χ
i ), that is only 

applicable when the choice instruction already appears on line i and repeats its execution.

6.2. Planning programs with lifted action instructions

Here we go one step further and increase the portion of a planning program that can be unspecified. A planning pro-
gram with lifted action instructions is a planning program in which action instructions have unknown arguments until the 
instruction is executed on a particular planning instance.

A PDDL action scheme (also called operators or lifted actions) is parameterized on a set of arguments. Similar to how flu-
ents are induced from predicates, a set of actions is induced from a PDDL lifted action by assigning objects to its arguments. 
For example, the lifted action inc(?var) from the grid navigation domain (Appendix A) has a single argument ?var, so 
actions inc(x) and inc(y) are induced assigning objects x and y to the argument ?var. In the following we assume 
that the actions of a planning frame � = 〈F , A〉 are induced from a set of lifted actions A and a set of objects �. Under 
this assumption, the instruction of a planning program can be a lifted action α ∈ A. Since the arguments of a lifted action 
are unspecified, a lifted action instruction effectively models a non-deterministic choice.

Given the current program state (s, i), the execution model for lifted action instructions is defined as:

• If wi ∈ A, the new program state is (s′, i + 1), where s′ = θ(s, wi(x)) is the result of applying an action wi(x) ∈ A
induced from wi , where every argument x ∈ �ar(wi) of wi is non-deterministically chosen such that pre(wi(x)) ⊆ s, 
i.e. such that wi(x) is applicable in s.
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Table 8
Generation of non-deterministic planning programs. Number of procedures; for each procedure: number of lines and instances, stack size, number of fluents 
and actions, search time and preprocessing time; total time (in seconds) elapsed while computing the solution.

Proc Lines Inst Stack Fluents Actions Search(s) Preprocess(s) Total(s)
Hall-A 5 (5,5, (2,2, 2 (1029,-, (4645,-, (TE,TE, (1.22,TE, TE

5,5,4) 2,2,2) -,-,-) -,-,-) TE,TE,TE) TE,TE,TE)
Fibonacci 2 (3,3) (2,4) 2 (321,341) (2043,2209) (0.11,0.24) (0.46,0.63) 1.44
Visit-all 3 (3,2,4) 2 2 (585,438,616) (1875,1038,2375) (0.10,0.06,42.63) (0.46,0.42,0.82) 44.49
GreenBlock 2 (4,3) (6,5) 2 (306,250) (1124,713) (203.16,0.09) (1.51,0.99) 205.75
Sorting 2 (4,4) (4,3) 2 (540,549) (2484,8981) (11.99,13.91) (3.57,3.78) 33.25
Triangular 1 3 2 1 291 588 0.02 0.29 0.31
Visual-M 3 (4,2,4) (4,2,5) 2 (274,135,279) (964,284,782) (0.37,0.01,249.1) (2.24,0.29,3.04) 12.57
Blocksworld 2 (3,4) (3,2) 2 (214,214) (651,651) 0.04 0.82 0.86

Additionally, the execution of a lifted action instruction fails if there is no possible applicable instantiations for that instruc-
tion.

Now we show a planning program with lifted action instructions for solving the Blocksworld task of putting all the blocks 
on the table. Each execution of unstack(?b1,?b2) non-deterministically assigns concrete block objects to parameters 
?b1 and ?b2 among the possible applicable instantiations. Likewise each putdown(?b3) execution assigns a concrete 
block object to parameter ?b3.

0. unstack(?b1,?b2)
1. putdown(?b3)
2. goto(0,!(all-clear))
3. end

We remark that the execution semantics of lifted action instructions is angelic [52]: not every assignment of blocks to the 
arguments ?b1, ?b2 and ?b3 leads to a valid plan. Rather, it is necessary to use a planner to determine valid assignments 
of objects to arguments.

To compute planning programs with lifted action a small modification in the compilation of Section 4 for basic planning 
programs is required. The modification is a redefinition of the classical planning actions for programming and executing 
action instructions. A lifted action wi ∈A induces one action wi(x) for each assignment x ∈ �ar(wi) to the arguments of wi . 
The actions for programming and executing a lifted action instruction are defined as follows:

pre(P(wi(x)) = pre(wi(x)) ∪ {insi,nil},
cond(P(wi(x)) = {∅ � {¬insi,nil, insi,wi }},

pre(R(wi(x)) = pre(wi(x)) ∪ {insi,wi },
cond(R(wi(x)) = cond(wi(x)).

6.3. Experiments

In these experiments we use several domains from previous sections, but with a slight modification. In the new version of 
the domains, action instructions have parameters, so the resulting planning programs include lifted instructions. In previous 
experiments, because we were using parameter-free actions, the execution of planning programs was deterministic. In the 
new domains with parameterized instructions, the execution of a planning program requires the planner to select the values 
of the action parameters each time an action instruction is executed. Similar to Hierarchical Task Networks (HTNs) [53], 
non-deterministic planning programs require the planner to compute a fully specified solution, constraining the form of 
the solution by pruning the actions that do not agree with the given program. Therefore planning program with choice 
instructions or lifted action instructions, can be viewed as Domain-specific Control Knowledge [54,43]. However, unlike HTNs, 
planning program with choice instructions or lifted action instructions can be exploited straightforward with an off-the-shelf 
classical planner.

Apart from existing domains, we added the Blocksworld domain. Our approach is to manually decompose the problem 
into two subproblems, where the first subproblem is to put all blocks on the table, and the second subproblem is to stack 
the blocks to form towers. The goal condition for the first subproblem is that all blocks should be on the table, and the 
goal condition for the second subproblem is usually expressed using fluents on (A,B), on (B,C), etc. However, in our simpler 
version, the goal is instead to form several towers of a given height, regardless of the specific placement of blocks.

Table 8 shows the results of the experiments for computing non-deterministic planning programs. The table reports the 
number of procedures; for each procedure: number of program lines, number of instances, stack size, number of fluents 
and actions, search time and preprocessing time; the total time to solve the overall problem. Note that the planner fails to 
solve one subproblem for Hall-A when actions are given as lifted instructions. The programs obtained for each domain are 
similar to those described in Section 5. However, since action instructions are lifted, the planner has to assign objects to 
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0. call(1) 0. unstack( ?b1, ?b2 )
1. pick-up( ?b1 ) 1. put-down( ?b3 )
2. stack( ?b2, ?b3 ) 2. goto( 0, !( all-clear ) )
3. goto( 1, !( eq( current-towers, target-towers ) ) ) 3. end
4. end

(a) �0: stack blocks on others until reaching the number of target towers (b) �1: put all blocks on table

Fig. 10. Non-deterministic planning program for Blocksworld.

Table 9
Validation of non-deterministic planning programs. In Compiled Tests, we compute the fluents, actions, expanded nodes and total time (in seconds) to 
obtain a plan for FD and BrFS. In Classical Tests we report the obtained results without using the planning program.

Compiled tests Classical tests

F A Exp/T (FD) Exp/T (Brfs) F A Exp/T (FD) Exp/T (Brfs)

Hall-A – – – – 10206 10396 822/1.79 -/ME
Fibonacci 64 482 49/0.32 55/0.32 56 654 28/0.07 15929/0.20
Visit-all 1045 1066 6511/9.55 8341/1.02 1029 1081 5176/3.29 -/ME
GreenBlock 421 20210 401/7.07 600/5.71 404 399 198/1.05 296/0.86
Sorting 258 26073 -/TE 801666/17.57 241 26060 6319/195.91 -/ME
Triangular 147 1835 61/2.13 76/1.94 242 7861 35/1.41 4353/0.34
Visual-M 45 49 872/0.35 1182/0.38 27 41 17/0.01 -/NSF
Blocksworld 10422 20210 3358/87.53 -/ME 10404 20200 65129/217.89 -/ME

action parameters and perform search to reach the goal. Fig. 10 shows the resulting planning program for the Blocksworld
domain. Procedure �1 repeatedly unstacks a block from another and puts it on the table until all blocks are clear. Procedure 
�0 first calls �1, then repeatedly picks up a block and stacks it on top of another block, until the number of current towers 
equals the number of target towers.

Regarding performance, FD has to ground the lifted instructions by assigning objects to their parameters, which causes 
an increase in the number of operators. As a result, both the preprocessing time and the search time is generally larger 
than for deterministic planning programs. On the flip side, there are domains such as Blocksworld that can not be solved 
by deterministic planning programs, while lifted instructions make it possible.

For validation we use the same instances as in Section 5 and address the same experiment reported in Table 7, but with 
non-deterministic programs acting as DCK instead of deterministic planning program with procedures. For the Blocksworld, 
we used an instance with 100 blocks to provide an example of how hard is to solve large classical planning instances versus 
the corresponding compiled instance with a non-deterministic planning program acting as DCK. Table 9 summarizes the 
obtained results and reports the number of fluents and actions, and total time that FD and BrFS needed to compute a plan. 
Again, we tested both the compiled problem that encodes the planning program in the initial state (compiled tests), and the 
classical domain and instance without DCK (classical tests). Only in Fibonacci BrFS performs better than FD because of the 
required preprocessing burden. And the classical instance of Visual-M is No-Solution-Found (NSF) because the BrFS planner 
does not support axioms and is a requirement for the classical domain.

7. Planning programs with high-level state features

In machine learning it is generally agreed upon that feature extraction is key to generate models that generalize well [55]. 
Likewise in automated planning it is well-known that, for many tasks, generalized plans are only computable if an infor-
mative state representation is available [6]. A good example are fluents x = n, y = n or aux = n (taken from the programs 
in Figs. 4 and 5) that are unnecessary for solving individual grid navigation tasks, but essential to compute a solution plan 
that generalizes to different grid locations and grid sizes.

In most applications of generalized planning such informative state features are hand-coded by a domain expert. This 
section shows how to compute generalized plans that contain high-level state features in the form of conjunctive queries
without having a prior high-level state representation. The section first provides our definition of high-level state features as 
conjunctive queries. Then it extends our notion of programs such that conditional goto instructions depend on the evaluation 
of a conjunctive query. The section ends extending our compilation to compute programs with conjunctive queries with an 
off-the-shelf classical planner.

7.1. High-level state features

The notion of high-level state feature is very general and has been used in different areas of AI and for different purposes. 
If we restrict ourselves to planning, a high-level state feature can broadly be viewed as a state abstraction to compactly 
represent planning tasks or solutions to planning tasks. For instance, x = n abstracts the set of states where variables x
and n have the same value, no matter what this particular value is. In the literature we can find diverse formalisms for 
representing high-level state features in planning that range from first order clauses [34] to description logic formulae [7], 
LTL formulae [56], PDDL derived predicates [57] and, more recently, observation formulae [2].
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equal(x,n) ← ∃v3.assign(x, v3) ∧ assign(n, v3),

lt(x,n) ← ∃v3, v4.assign(x, v3) ∧ assign(n, v4) ∧ lessthan(v3, v4).

Fig. 11. Two derived predicates in the form of conjunctive queries that correspond to the high-level state features x = n and x < n, respectively.

Our planning model (defined in Section 3) considered that states are represented by instantiating a set of predicates 
� with a set of objects �. In this case, a high-level state feature corresponds to an arbitrary formula over predicates 
in �. High-level state features are also known as derived predicates if they produce a new predicate whose truth value 
is determined by the corresponding formula. Derived predicates have proven useful for concisely representing planning 
problems with complex conditions and effects [58] and for more efficiently solving optimal planning problems [59].

For computation purposes in this work we assume that the set of possible high-level state features is restricted to 
conjunctive queries from database theory [60]. Conjunctive queries are a simple fragment of first-order logic in which for-
mulae are constructed from atoms using conjunction and existential quantification (disallowing all other logical symbols). 
A conjunctive query ϕ can be written as

ϕ = (v1, . . . , vk).∃vk+1, . . . , vm.φ1 ∧ · · · ∧ φq,

where v1, . . . , vk are free variables, vk+1, . . . , vm are bound variables, and φ1, . . . , φq are atoms. In addition, we make the 
following further assumptions:

1. We adopt the model of planning programs with variables from Section 5.2, i.e. there exists a predicate assign ∈ �, a set 
of variable objects �v and a set of value objects �x .

2. We define a new set �b of bound variable objects that represent the bound variables vk+1, . . . , vm of a conjunctive query 
ϕ , and let � = �v ∪ �x ∪ �b be the global set of objects.

3. Each atom of a conjunctive query is on the form p(ω), where p ∈ � is a predicate and ω ∈ �ar(p) is an argument list of 
appropriate arity. If p = assign, ω = (ω1, ω2) consists of a variable object ω1 ∈ �v and a bound variable object ω2 ∈ �b , 
else ω ∈ �

ar(p)

b consists exclusively of bound variable objects.

Fig. 11 shows two derived predicates in the form of conjunctive queries that correspond to the high-level state features 
x = n and x < n, respectively. In the example, x and n are variable objects in �v , while v3 and v4 are bound variables in 
�b . The predicate lessthan models the relation < on value objects in �x . Note that x and n are implicit assignments to two 
free variables v1 and v2; although the two derived predicates are valid for any pair of variable objects x, n ∈ �v , our model 
assumes that free variables are always instantiated on variable objects this way.

7.2. Computing programs with conjunctive queries

We incorporate conjunctive queries into planning programs by replacing the fluent f of a conditional goto instruction 
goto(i′, ! f ) with a conjunctive query ϕ . The execution of a program with conjunctive queries proceeds exactly as explained 
in Section 4, except for conditional goto instructions. Given a program state (s, i), the execution of a conditional goto 
instruction on a conjunctive query is defined as follows:

• If wi = goto(i′, !ϕ), the new program state is (s, i + 1) if ϕ unifies with the current state s, and (s, i′) otherwise.

We next explain how to extend the compilation from Section 4 to simultaneously compute the program and the high-
level state features necessary to solve a given generalized planning task. To do so, we need a unification strategy that can 
be encoded in PDDL and integrated with our classical planning compilation.

Let ϕ = (v1, . . . , vk).∃vk+1, . . . , vm.φ1 ∧ · · · ∧ φq be a conjunctive query, and let u ∈ �k
v be the corresponding assignment 

of variable objects to free variables. Our strategy for unifying ϕ with the current state s is to maintain a subset � ⊆ �m−k
x

of possible joint assignments of value objects to the bound variables vk+1, . . . , vm . The strategy unifies the atoms of ϕ with 
s one atom at a time, starting with φ1, and updates the set � as we go along. After processing all atoms, ϕ will unify with 
s if and only if � is non-empty, i.e. if there remains at least one possible joint assignment to the bound variables.

To illustrate this unification strategy, consider again the navigation problem of visiting the four corners of an n × n grid 
(Fig. 4) and the derived predicate ϕ = equal(x, n) from Fig. 11. Assume that the agent is in the initial position (4, 3) in 
a 5 × 5 grid, represented by the fluents {assign(x, 4), assign(y, 3), assign(n, 5)}. Unification proceeds one atom at a time, 
and initially � = �1

x = {1, 2, 3, 4, 5, . . .}, i.e. all assignments to the only bound variable v3 are possible. The first atom 
assign(x, v3) of ϕ unifies only with v3 = 4, so joint assignments in � that do not assign the value object 4 to v3 are no 
longer possible, resulting in an updated assignment set � = {4}. The second atom assign(n, v3) unifies only with v3 = 5, but 
since this value object is no longer in �, the assignment set � becomes empty, and ϕ is considered non-unifiable with s.

With the unification strategy defined, we are ready to extend the compilation of Section 5 to compute planning programs 
with conjunctive queries. The extended compilation takes as input a generalized planning problem P = {P1, . . . , P T } and 
three constants n, q and b: n, the number of program lines; q, the number of atoms; and b, the number of bound variable 
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objects in �b . The output of the compilation is a single planning problem P b
n,q = 〈F b

n,q, Ab
n,q, Ib

n,q, G ′
n〉. A solution plan π to 

P b
n,q is a sequence of actions that encodes a planning program � with conjunctive queries and validates that the execution 

of � solves every classical planning instance in P .
Since programming and executing action and termination instructions is identical to the compilation for basic planning 

programs (Section 4), we only describe here the part of P b
n,q that corresponds to programming and evaluating conjunctive 

queries:

• For each pair of program lines i, i′ such that i′ �= i and i′ �= i + 1, then F b
n,q contains a fluent insi,goto(i′) indicating that 

the instruction on line i is a goto(i′, !ϕ) instruction with a conjunctive query.
• We define a set of bound variable objects �b = {v1, . . . , vb} and a set of slots � = {σ1, . . . , σq}. Each slot is a placeholder 

for an atom of a conjunctive query, and we also define a dummy slot σ0.
– For each slot σk ∈ � ∪ {σ0}, we add a fluent slotk indicating that σk is the current slot (our unification strategy 

processes one atom at a time).
– For each line i and slot σk ∈ �, a fluent eslotki indicating that slot σk on line i is empty.

– For each line i, slot σk ∈ �, predicate p ∈ � and tuple of bound variable objects ω ∈ �
ar(p)

b , a fluent atom-pk
i (ω)

indicating that p(ω) is the atom in slot σk of line i. (If p = assign, the first element ω1 of ω is instead a variable 
object in �v .)

– For each slot σk ∈ � and object tuple (o1, . . . , ob) ∈ �b
x , a fluent possk(o1, . . . , ob) indicating that at σk , (o1, . . . , ob) is 

a possible joint assignment of objects to the bound variables v1, . . . , vb .
• A fluent eval indicating that we are done evaluating a conjunctive query and a fluent acc representing the outcome of 

the evaluation (true or false).

In the initial state, all fluents above appear as false except slot0, indicating that we are ready to program and unify the 
atoms of any conjunctive query. The initial state on other fluents is identical to the original compilation, as is the goal 
condition. We next describe the set of actions in Ab

n,q that have to be added to the original compilation to implement the 
mechanism for programming and evaluating conjunctive queries.

A conjunctive query ϕ is activated by programming a goto instruction goto(i′, !ϕ) on a given line i. As a result of 
programming the goto instruction, all slots on line i are marked as empty. For each pair of program lines i, i′ , the action 
pgotoi,i′ for programming goto(i′, !ϕ) on line i is defined as

pre(pgotoi,i′) = {pci, insi,nil},
cond(pgotoi,i′) = {∅ � {¬insi,nil, insi,goto(i′),eslot1i , . . . ,eslotqi }}.

The precondition contains two fluents from the original compilation: pci , modeling that the program counter equals i, and 
insi,nil , modeling that the instruction on line i is empty.

Once activated, we have to program the individual atoms in the slots of the conjunctive query ϕ . After programming 
an atom, the slot is no longer empty. For each line i, slot σk ∈ �, predicate p ∈ � and tuple of bound variable objects 
ω ∈ �

ar(p)

b , the action patom-pk
i (ω) is defined as

pre(patom-pk
i (ω)) = {pci, slotk−1,eslotki },

cond(patom-pk
i (ω)) = {∅ � {¬eslotki ,atom-pk

i (ω)}}.
Again, if p = assign, the first element ω1 of ω is instead a variable object in �v (effectively assigning ω1 to a free variable 
of the conjunctive query).

The key ingredient of the compilation are step actions that iterate over the atoms in each slot while propagating the 
remaining possible values of the bound variables. For each line i, slot σk ∈ �, predicate p ∈ � and tuple of bound variable 
objects ω ∈ �

ar(p)

b , step action step-pk
i (ω) is defined as

pre(step-pk
i (ω)) = {pci, slotk−1,atom-pk

i (ω)},
cond(step-pk

i (ω)) = {∅ � {¬slotk−1, slotk}}
∪ {{possk−1(o1, . . . ,ob), p(o(ω))} � {possk(o1, . . . ,ob)} : (o1, . . . ,ob) ∈ �b

x}.
To apply a step action, an atom has to be programmed first. The unconditional effect is moving from slot σk−1 to slot σk . In 
addition, the step action updates the possible assignments to the bound variables v1, . . . , vb .

For an assignment (o1, . . . , ob) to be possible at slot σ k , it has to be possible at σ k−1, and the atom p(ω) programmed at 
slot k has to induce a fluent p(o(ω)) that is currently true. Here, o(ω) ∈ �

ar(p)
x denotes the tuple of ar(p) value objects that 

is induced by (o1, . . . , ob) and ω. For example, if ω = (v3, v1, v2), then o(ω) = o(v3, v1, v2) = (o3, o1, o2). Note that there is 
one conditional effect for each possible assignment (o1, . . . , ob) to v1, . . . , vb . If k = 1, the condition possk−1(o1, . . . , ob) is 
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removed since all assignments are possible prior to evaluating the first atom. If p = assign, the first element in o(ω) simply 
equals ω1 ∈ �v , the variable object programmed as the first argument of p.

Once we have iterated over all atoms, we have to check whether there remains at least one possible assignment, thereby 
evaluating the entire conjunctive query. For each line i, let evali be an action defined as

pre(evali) = {pci, slotq},
cond(evali) = {∅ � {eval}} ∪ {{possq(o1, . . . ,ob)} � {acc} : (o1, . . . ,ob) ∈ �b

x}.
Action evali is only applicable once we are at the last slot σq . The conditional effects add the fluent acc if and only if there 
remains a possible assignment to v1, . . . , vb at σq .

Finally, we can now use the result of the evaluation to determine the program line that we jump to. For each pair of 
lines i, i′ , let jmpi,i′ be an action defined as

pre(jmpi,i′) = {pci, insi,goto(i′), slotq,eval},
cond(jmpi,i′) = {∅ � {¬pci,¬eval,¬acc,¬slotq, slot0}}

∪ {{¬acc} � {pci′ }, {acc} � {pci+1}}
∪ {∅ � {¬possk(o1, . . . ,ob) : 1 ≤ k ≤ q, (o1, . . . ,ob) ∈ �b

x}}.
The effect is to jump to line i′ if acc is false, else continue execution on line i + 1. We also delete fluents eval and acc, 
as well as all instances of possk(o1, . . . , ob) in order to reset the evaluation mechanism prior to the next evaluation of a 
conjunctive feature. The current slot is also reset to σ0.

7.3. Classification with planning programs

Our extension of planning programs with conjunctive queries allows us to model supervised classification tasks as if they 
were generalized planning problems and therefore address them using our compilation and a classical planner. Although 
this approach is not competitive with current Machine Learning techniques for supervised classification it brings a brand 
new landscape of benchmarks to classical planning.

Formally, learning a noise-free classifier from a set of labeled examples {e1, . . . , eT }, where each example et , 1 ≤ t ≤ T , 
is labeled with one class in C = {c1, . . . , c Z }, can be viewed as a generalized planning problem P = {P1, . . . , P T } such that 
each individual planning problem Pt = 〈F , A, It , Gt〉, 1 ≤ t ≤ T , models the classification of the tth example:

• F is the set of fluents needed to model the features and labels of the learning examples.
• A contains the actions to label a given example with a class. For instance, a binary classification task can be modeled

as C = {0, 1} and A = {setNegative, setPositive}, where setNegative labels an example with class 0, and setPositive labels 
an example with class 1.

• It ⊆ F contains the fluents that describe the tth example while Gt is the fluent that defines the class label of the tth 
example.

According to this formulation, a solution � to a generalized planning problem P = {P1, . . . , P T } (that models a classification 
task) is a noise-free classifier that covers the T learning examples.

This model is particularly natural for classification tasks in which both the examples and the classifier are described using 
logic. The classic Michalski’s train [61] is a good example of such tasks. It is a binary classification problem that defines 10 
different trains (5 traveling east and 5 traveling west) and the classification target is explaining what causes a train to travel 
east or west. Trains are defined using the following relations: which wagon is in a given train, which wagon is in front, the 
wagon’s shape, its number of wheels, whether it has a roof or not (closed or open), whether it is long or short, the shape 
of the objects the wagon is loaded with and the class of the train (east or west).

In more detail, the generalized planning problem encoding the Michalski’s train task would be:

• Fluents F induced from � = {(wagons ?Number), (hasCar ?Car), (infront ?Car ?Car), (shape ?Car ?Shape), (wheels ?
Car ?Number), (closed ?Car), (open ?Car), (long ?Car), (short ?Car), (double ?Car), (jagged ?Car), (load ?Car ?Shape ?
Number), (eastbound), (westbound)}.

• Actions A = {setWest}. Although this is a binary classification task we assume that any example has initial class 
eastbound, causing the resulting planning programs to be more compact.

pre(setWest) = {∅},
cond(setWest) = {∅ � {¬eastbound,westbound}}.

• Each initial state It defines the tth train and Gt defines its associated class (traveling east or traveling west).
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Fig. 12. Planning program that encodes a noise-free classifier for the Michalski’s train problem.

Fig. 12 shows a planning program computed using our compilation and that encodes a noise-free classifier for the 
Michalski’s train problem. As explained, the program assumes that any example initially has class eastbound. Line 1 of 
the program is an unconditional jump to line 3. The program encodes the following two classification rules: setWest ←
jagged(X) and setWest ← ¬jagged(X), wagons(two) that capture that a given train is traveling west if it has a jagged wagon 
or if it does not have a jagged wagon but it is a train that has exactly two wagons.

7.4. Properties of the compilation

With regard to the correctness of the approach we provide here a formal proof of its soundness and completeness. We 
focus here on the correctness of programming and unifying high-level state features since the proofs for the remaining 
functionality of the compilation is analogous to the proofs of the corresponding theorems in Section 4.

Theorem 11 (Soundness). Any plan π that solves P b
n,q induces a program � with conjunctive queries that solves P .

Proof. Since planning programs with conjunctive queries are identical to basic planning programs except for goto instruc-
tions, the arguments from the proof of Theorem 3 still apply. Programming atoms in slots is only possible when slots are 
empty, and once programmed, atoms cannot change, so the fluents of type atom-pk

i (ω) effectively encode a conjunctive 
query with q atoms on a line i. All that remains is to show that after iterating over the atoms of a conjunctive query ϕ , the 
fluent acc is true if and only if ϕ unifies with the current state s.

We show by induction on k that after iterating over the atoms of ϕ , the fluent possk(o1, . . . , ob) is true if and only if 
the assignment (o1, . . . , ob) to the bound variables v1, . . . , vb causes the set of atoms {φ1, . . . , φk} of ϕ to unify with s. The 
base case is given by k = 0, in which case the set of atoms {φ1, . . . , φ0} is empty and thus trivially unifies with s. For k > 0, 
by hypothesis of induction the fluent possk−1(o1, . . . , ob) is true if and only if (o1, . . . , ob) causes {φ1, . . . , φk−1} to unify 
with s. Because of the definition of action step-pk

i (ω), possk(o1, . . . , ob) becomes true if and only if possk−1(o1, . . . , ob) is 
true and the fluent p(o(ω)) induced by p, ω and (o1, . . . , ob) is true in s. This corresponds precisely to {φ1, . . . , φk} unifying 
with s. �
Theorem 12 (Completeness). If there exists a planning program � with conjunctive queries that solves P such that |�| ≤ n, there 
exists a corresponding plan π that solves P b

n,q.

Proof. Again, the only difference with respect to the proof of Theorem 4 is the treatment of goto instructions. For each 
possible atom p(ω), there is a corresponding action patom-pk

i (ω) that programs p(ω) in slot σ k of line i. Hence we can 
emulate any conjunctive query ϕ by programming the appropriate atoms in the slots of a line. The resulting plan π also 
has to check whether ϕ unifies with the current state s, but this is a deterministic process. The only issue is that we have 
to ensure that the bounds q and b are generous enough to accommodate the conjunctive queries of �. �

Just as the bound n on the number of program lines, setting the bounds q and b too small may make P b
n,q unsolvable. 

For example, our compilation can only generate the derived predicates in Fig. 11 if q ≥ 3 and b ≥ 2. Setting the bounds too 
high does not formally affect the completeness of the approach, but causes an increase in the size of the resulting classical 
planning problem and thus affects the performance of the classical planner used to solve P b

n,q .
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Table 10
Plan generation for planning programs with high-level state features. Number of program lines, variables and slots; number of fluents and actions; search, 
preprocess and total time (in seconds) elapsed while computing the solution.

Domain Lines Vars Slots Fluents Actions Search Preprocess Total
List 3 1 2 333 208 0.03 0.42 0.45
Triangular 3 1 2 450 243 1.18 1.56 2.74
Trains 4 1 1 706 440 21.86 1.40 23.26
And 4 1 2 231 152 0.12 0.19 0.31
Or 4 1 2 231 152 0.11 0.18 0.29
Xor 4 2 2 327 200 0.06 0.26 0.32

With respect to the size of the compilation it is not only influenced by the values of its parameters n, b and q but also 
by the number of predicates and their arity since the space of possible high-level state features for a given generalized 
planning tasks depends on these numbers.

7.5. Experiments

We evaluate our method in two kinds of benchmarks. We first consider benchmarks from generalized planning where 
the target is generating a plan that generalizes without providing any prior high-level representation of the states. This 
set of benchmarks include iterating over a list and computing the N-th triangular number 

∑N
n=1 n. On the other hand, we 

consider binary classification tasks which include Michalski’s train, where we must decide if a train goes east or west based 
on a given group of features, as well as generating the classifiers corresponding to the logic functions y = and(X1, X2), y =
or(X1, X2) and y = xor(X1, X2). Table 10 summarizes the obtained results using Fast Downward in the Lama-2011 setting. 
We report the number of program lines used to solve the generalized planning problem, the number of bounded variables 
and slots required to generate the features, and the search, preprocess and total time taken to generate the program.

We briefly describe the features and programs generated for the different domains. In List, we generate the Boolean 
feature f = equal(X, i) ∧ equal(X, n), that is equivalent to (i == n). In Triangular, we generate the feature f = equal(X, y) ∧
equal(X, sum(X, X)), which is actually equivalent to (y == 0). For Michalski’s train, we generate the program and features 
shown in Fig. 12. In the and(X1, X2) and or(X1, X2) domains, two features are generated: one that represents whether 
a given variable is false or true, respectively, and a second feature f = equal(X, y) ∧ equal(X, False) that captures if the 
instance is already classified (the value of y is already set). The 4-line program generated for and(X1, X2) is:

0. goto(3,!equal(X,False))
1. setFalse
2. goto(4,!(equal(X,y) ∧ equal(X,False)))
3. setTrue
4. end

In contrast to the and and or functions, the xor(X1, X2) function requires 2 variables for the first feature to detect that one 
is true and the other is false or vice versa, while the second feature is just to know if it has been classified.

8. Conclusion

We introduced a novel formalism for representing generalized plans, that can branch and loop, and presented a com-
pilation to compute them with off-the-shelf planners. Unlike previous work for planning with loops [62], the input to our 
approach is a set of example tasks to be covered, like a training set in ML. These input tasks are represented as standard 
classical planning tasks in PDDL, and can be solved using an off-the-shelf classical planner.

So far, the utility of our compilation is limited to tasks solvable with small planning programs. Part of the reason is that 
the number of possible programs is exponential in the number of program lines. In addition, some domains require complex 
state queries to compute a compact generalized plan. For instance, a compact while general solution for sokoban requires 
defining complex connectivity properties, such as reachable, that involve recursion [59]. For these reasons our current ap-
proach cannot compute effective DCK for arbitrary classical planning domains. We have shown that we can address more 
challenging tasks if a subtask decomposition is available. In this case we can separately compute auxiliary procedures for 
each of the subtasks and incrementally reuse them. An interesting open research direction is then to automatically discover 
these subtask decompositions.

Fast Downward, the planner used in the evaluation, is the most widely used in the planning community and is a good 
touchstone to evaluate the capacity of classical planners to address generalized planning tasks. On the other hand, Fast 
Downward is a heuristic-search based planner whose heuristics are based in the delete relaxation of the planning problem 
and typically has difficulties with problems that include dead-ends, such as those in our compilations. The domains result-
ing from our compilation encode key information in the delete effects of actions: when an instruction is programmed on a 
line i, the fluent insi,nil is deleted, preventing us from programming another instruction on the same line. In a delete-free 
relaxation, insi,nil remains true, making it possible to program any number of instructions on the same line. As a conse-
quence, a solution to the delete-free relaxation can effectively use different programs to solve the individual instances of a 
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generalized planning problem, which results in a poor approximation of how difficult the original problem is. In addition, a 
program suitable for a particular individual instance might not be suitable for solving the next instance, causing dead-ends 
and deep backtracking. In the future it would be interesting to explore novel planning techniques that deal better with 
these issues.

In experiments, the resulting generalized plan solves all instances of a given domain. In general, however, there are 
no such guarantees and the planner only validates that the resulting generalized plan satisfies the planning problems that 
comprise the generalized planning task. A different approach is defining the goals of generalized tasks using expressive logic 
formulas instead of a set of tests cases, for example using LTL [63] or quantified goals [64]. In that case the planner should 
verify that the generated planning program satisfies the formula.

Related to this issue is the selection of relevant examples that can produce a solution that generalize. A key issue 
is to determine which instances generalize most efficiently. Currently this selection of informative instances is done by 
hand, and an interesting research direction is to develop techniques for automatic instance selection. In this case implicit 
representations of the planning instances [4] seem more useful since they can act as generative models. Since planning 
problems are highly structured there is no guarantee that randomly sampled problems are relevant for solving a given 
generalized planning task. An interesting research direction would be to study how to generate examples of this kind. A good 
starting point could be previous work on generating random walks [65] and active learning [66] in planning domains.

Finally, we are only able to generate high-level state features in the form of conjunctive queries, and hence we cannot 
produce from scratch programs that contain features with unbounded transitive or recursive closures. This kind of features 
are known to be useful for some planning domains, e.g. the above feature (the transitive closure of on) for the Blocksworld 
domain. In the near future we would like to extend our approach to generating more expressive features.
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Appendix A. PDDL definition of the grid navigation domain and example planning problem

(define (domain gridnav) ;; Grid navigation domain
(:requirements :conditional-effects :typing)
(:types variable value)
(:predicates

(assignment ?var - variable ?val - value) ;; Variable \xch{assignment}{assigment}
(next ?val1 ?val2 - value) ;; Static relations between values
(max-value ?var - variable ?val - value) ;; Maximum value in the domain of ?var
(is-max ?var - variable) ;; Whether ?var has its maximum value

)
(:action inc

:parameters (?var - variable)
:precondition (and)
:effect (and

(forall (?val1 ?val2 - value)
(when (and (not (is-max ?var)) (assignment ?var ?val1) (next ?val1 ?val2))

(and (not (assignment ?var ?val1)) (assignment ?var ?val2)))))
)
(:action dec

:parameters (?var - variable)
:precondition (and)
:effect (and

(forall (?val1 ?val2 - value)
(when (and (assignment ?var ?val2) (next ?val1 ?val2))

(and (not (assignment ?var ?val2)) (assignment ?var ?val1)))))
)
(:derived (is-max ?var - variable)

(exists (?val - value) (and (assignment ?var ?val) (max-value ?var ?val))))
)

(define (problem gridnav-4-3) ;; Example grid navigation problem
(:domain gridnav)
(:objects
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x y - variable
v1 v2 v3 v4 v5 v6 v7 - value

)
(:init

(assignment x v4)
(assignment y v3)
(max-value x v5)
(max-value y v5)
(next v1 v2)
(next v2 v3)
(next v3 v4)
(next v4 v5)
(next v5 v6)
(next v6 v7)

)
(:goal (and

(assignment x v1)
(assignment y v1))

)
)
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