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Abstract
This paper presents a novel approach for generating
Context-Free Grammars (CFGs) from small sets of
input strings (a single input string in some cases).
Our approach is to compile this task into a classical
planning problem whose solutions are sequences
of actions that build and validate a CFG compli-
ant with the input strings. In addition, we show
that our compilation is suitable for implementing
the two canonical tasks for CFGs, string produc-
tion and string recognition.

1 Introduction
A formal grammar is a set of symbols and rules that describe
how to form the strings of certain formal language. Usually
two tasks are defined over formal grammars:
• Production: Given a formal grammar, generate strings

that belong to the language represented by the grammar.
• Recognition (also known as parsing): Given a formal

grammar and a string, determine whether the string be-
longs to the language represented by the grammar.

Chomsky defined four classes of formal grammars that dif-
fer in the form and generative capacity of their rules [Chom-
sky, 2002]. In this paper we focus on Context-Free Grammars
(CFGs), where the left-hand side of a grammar rule is always
a single non-terminal symbol. This means that the symbols
on the left-hand side of CFG rules do not appear in the strings
that belong to the corresponding language.

To illustrate this Figure 1(a) shows an example CFG that
contains a single non-terminal symbol, S, and three terminal
symbols (a, b and ε, where ε denotes the empty string). This
CFG defines three production rules that can generate, for in-
stance, the string aabbaa by applying the first rule twice, then
the second rule once and finally, the third rule once again.
The parse tree in Figure 1(b) exemplifies the previous rule
application and proves that the string aabbaa belongs to the
language defined by the grammar.

Learning the entire class of CFGs using only positive ex-
amples, i.e. strings that belong to the corresponding formal
language, is not identifiable in the limit [Gold, 1967]. In this
paper we address the generation of CFGs from positive exam-
ples but: (1) for a bounded maximum number of non-terminal

S → aSa
S → bSb
S → ε

(a)

S
/|\
a S a
/|\
a S a
/|\
b S b

|
ε

(b)

Figure 1: (a) Example of a context-free grammar; (b) the corre-
sponding parse tree for the string aabbaa.

symbols in the grammar and (2), a bounded maximum size of
the rules in the grammar (i.e. a maximum number of symbols
in the right-hand side of the grammar rules).

Our approach is compiling this inductive learning task into
a classical planning task whose solutions are sequences of ac-
tions that build and validate a CFG compliant with the input
strings. The reported empirical results show that our compi-
lation can generate CFGs from small amounts of input data
(even a single input string in some cases) using an off-the-
shelf classical planner. In addition, we show that the com-
pilation is also suitable for implementing the two canonical
tasks of CFGs, string production and string recognition.

2 Background
This section defines the formalization of CFGs and the plan-
ning models that we adopt in this work.

2.1 Context-Free Grammars
We define a CFG as a tuple G = 〈V, v0,Σ, R〉 where:
• V is the finite set of non-terminal symbols, also called

variables. Each v ∈ V represents a sub-language of the
language defined by the grammar.
• v0 ∈ V is the start non-terminal symbol that represents

the whole grammar.
• Σ is the finite set of terminal symbols, which are disjoint

from the set of non-terminal symbols, i.e. V ∩ Σ 6= ∅.
The set of terminal symbols is the alphabet of the lan-
guage defined by G and can contain the empty string,
which we denote by ε ∈ Σ.
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• R : V → (V ∪Σ)∗ is the finite set of production rules in
the grammar. By definition rules r ∈ R always contain
a single non-terminal symbol on the left-hand side.

Figure 1(a) shows a 1-variable CFG since it defines a single
non-terminal symbol. In this example V = {S}, v0 = S,
Σ = {a, b, ε}, and R = {S → aSa, S → bSb, S → ε}.

For any two strings e1, e2 ∈ (V ∪ Σ)∗ we say that e1 di-
rectly yields e2, denoted by e1 ⇒ e2, iff there exists a rule
α → β ∈ R such that e1 = u1αu2 and e2 = u1βu2 with
u1, u2 ∈ (V ∪ Σ)∗. Furthermore we say e1 yields e2, de-
noted by e1 ⇒∗ e2, iff ∃k ≥ 0 and ∃u1, . . . , uk such that
e1 = u1 ⇒ u2 ⇒ . . . ⇒ uk = e2. For instance, Fig-
ure 1(b) shows how the string S yields the string aabbaa.
The language of a CFG, L(G) = {e ∈ Σ∗ : v0 ⇒∗ e}, is
the set of strings that contain only terminal symbols and that
can be yielded from the string that contains only the initial
non-terminal symbol v0.

Given a CFG G and a string e ∈ L(G) that belongs to its
language, we define a parse tree tG,e as an ordered, rooted
tree that determines a concrete syntactic structure of e ac-
cording to the rules in G:

• Each node in a parse tree tG,e is either:

– An internal node that corresponds to the applica-
tion of a rule r ∈ R.

– A leaf node that corresponds to a terminal symbol
σ ∈ Σ and has no outgoing branches.

• Edges in a parse tree tG,e connect non-terminal symbols
to terminal or non-terminal symbols following the rules
R in G.

2.2 Classical Planning with Conditional Effects
We use the model of classical planning with conditional ef-
fects because conditional effects allow to adapt the execution
of a sequence of actions to different initial states, as shown in
conformant planning [Palacios and Geffner, 2009]. The sup-
port of conditional effects is now a requirement of the Inter-
national Planning Competition [Vallati et al., 2015] and most
current classical planners natively cope with conditional ef-
fects without compiling them away [Helmert, 2006].

We use F to denote a set of propositional variables or flu-
ents describing a state. A literal l is a valuation of a fluent
f ∈ F , i.e. l = f or l = ¬f . A set of literals L on F rep-
resents a partial assignment of values to fluents (WLOG we
assume that L does not assign conflicting values to any flu-
ent). We use L(F ) to denote the set of all literal sets on F ,
i.e. all partial assignments of values to fluents. Given L, let
¬L = {¬l : l ∈ L} be the complement of L.

A state s is a set of literals such that |s| = |F |, i.e. a total
assignment of values to fluents. The number of states is then
2|F |. Explicitly including negative literals ¬f in states sim-
plifies subsequent definitions, but we often abuse notation by
defining a state s only in terms of the fluents that are true in
s, as is common in STRIPS planning.

A classical planning frame is a tuple Φ = 〈F,A〉, where
F is a set of fluents and A is a set of actions with conditional
effects. Each action a ∈ A has a set of literals pre(a) ∈
L(F ) called the precondition and a set of conditional effects

cond(a). Each conditional effect C B E ∈ cond(a) is com-
posed of two sets of literals C ∈ L(F ) (the condition) and
E ∈ L(F ) (the effect).

An action a ∈ A is applicable in state s if and only if
pre(a) ⊆ s, and the resulting set of triggered effects is

eff(s, a) =
⋃

CBE∈cond(a),C⊆s

E,

i.e. effects whose conditions hold in s. The result of applying
a in s is a new state θ(s, a) = (s \ ¬eff(s, a)) ∪ eff(s, a).

Given a frame Φ = 〈F,A〉, a classical planning instance
is a tuple P = 〈F,A, I,G〉, where I ∈ L(F ) is an initial
state (i.e. |I| = |F |) and G ∈ L(F ) is a goal condition. We
consider the fragment of classical planning with conditional
effects that includes negative conditions and goals.

A plan for P is an action sequence π = 〈a1, . . . , an〉 that
induces a state sequence 〈s0, s1, . . . , sn〉 such that s0 = I
and, for each i such that 1 ≤ i ≤ n, ai is applicable in si−1
and generates the successor state si = θ(si−1, ai). The plan
π solves P if and only if G ⊆ sn, i.e. if the goal condition is
satisfied following the application of π in I .

2.3 Generalized Planning
Our approach for learning CFGs from positive examples is
to model this task as a generalized planning problem that is
eventually solved with an off-the-shelf classical planner using
the compilation proposed by Jiménez and Jonsson (2015).

We define a generalized planning problem as a finite
set of classical planning instances P = {P1, . . . , PT }
within the same planning frame Φ. Therefore, P1 =
〈F,A, I1, G1〉, . . . , PT = 〈F,A, IT , GT 〉 share the same flu-
ents and actions and differ only in the initial state and goals.
Although actions are shared, each action can have differ-
ent interpretations in different states due to conditional ef-
fects. Given a planning frame Φ = 〈F,A〉, then Γ(Φ) =
{〈F,A, I,G〉 : I ∈ L(F ), |I| = |F |, G ∈ L(F )} denotes the
set of all planning instances that can be instantiated from Φ
by defining an initial state I and a goal condition G.

A solution Π to a generalized planning problem P is a
generalized plan that solves every individual instance Pt,
1 ≤ t ≤ T . Generalized plans may have diverse forms
that range from DS-planners [Winner and Veloso, 2003] and
generalized polices [Martı́n and Geffner, 2004] to finite state
machines [Bonet et al., 2010; Segovia-Aguas et al., 2016b],
AND/OR graphs or CFGs [Ramirez and Geffner, 2016].

In this work we assume that the solution to a general-
ized planning problem P is in the form of a planning pro-
gram [Jiménez and Jonsson, 2015; Segovia-Aguas et al.,
2016a]. Briefly, a planning program is a set of procedures,
each a sequence of planning actions enhanced with goto in-
structions and procedure calls. However, in this work there is
no need to include goto instructions since they are not needed
to represent CFGs.

Given a frame Φ = 〈F,A〉, a planning program with proce-
dures is a finite set of planning programs Π = {Π0, . . . ,Πm}
(we adopt the convention of designating Π0 as the main pro-
gram, and {Π1, . . . ,Πm} as the auxiliary procedures). Ev-
ery Πj , 0 ≤ j ≤ m is then a sequence of instructions
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Π0: 0. produce a Π1: 0. produce b
1. produce a 1. produce b
2. call(1) 2. end
3. produce a
4. produce a
5. end

Figure 2: Example of a planning program Π = {Π0,Π1} with one
auxiliary procedure that produces the string aabbaa.

Πj = 〈w0, . . . , wn〉. Each instruction wi, 0 ≤ i ≤ n,
is associated with a program line i and is drawn from the
instructions set I = A ∪ Icall ∪ {end}, where Icall =
{call(j’) : 0 ≤ j′ ≤ m} is the set of procedure calls,
allowing any procedure to call any other procedure on an arbi-
trary program line (j = j′ implies a recursive call). Figure 2
shows an example of a planning program with one auxiliary
procedure that produces the string aabbaa. In this example,
A = {produce a, produce b}, where produce a has
the effect of producing the terminal symbol a.

To define the execution model of a planning program with
procedures we first introduce the notion of a call stack that
keeps track of where control should return when the execution
of a procedure terminates. Each element of the call stack is a
tuple (j, i), where j is an index that refers to a procedure Πj ,
0 ≤ j ≤ m and i is a program line, 0 ≤ i ≤ |Πj |. In what
follows we use Ω ⊕ (j, i) to denote a call stack recursively
defined by a call stack Ω and a top element (j, i).

The execution model for a planning program Π consists of
a program state (s,Ω), where s is a planning state and Ω is a
call stack. Given a program state (s,Ω⊕(j, i)), the execution
of instruction wji on line i of procedure Πj is defined as:

• If wji ∈ A, the new program state is (s′,Ω⊕ (j, i+ 1)),
where s′ = θ(s, wji ) is the state resulting from applying
action wji in state s.

• If wji = call(j’), the new program state is (s,Ω ⊕
(j, i+ 1)⊕ (j′, 0)). In other words, calling a procedure
Πj′ has the effect of (1) incrementing the program line
at the top of the stack; and (2) pushing a new element
onto the call stack to start the execution of Πj′ on line 0.

• If wji = end, the new program state is (s,Ω), i.e. has
the effect of terminating a procedure by popping element
(j, i) from the top of the call stack.

The execution of a planning program with procedures ter-
minates when executing an end instruction empties the call
stack, i.e. in program states (s, ∅).

To execute a planning program with procedures Π on a
planning problem P = 〈F,A, I,G〉, we set the initial pro-
gram state to (I, (0, 0)), i.e. execution is in the initial plan-
ning state, on program line 0 of the main program Π0. To
ensure that the execution model remains bounded we impose
an upper bound ` on the size of the call stack.

Executing Π on P can fail for any of these four reasons:

1. Execution terminates in program state (s, ∅) but the goal
condition does not hold, i.e. G 6⊆ s.

2. When executing action wi ∈ A in program state (s,Ω),
the precondition of wi does not hold, i.e. pre(wi) 6⊆ s.

3. Execution enters an infinite loop that never reaches a
program state (s, ∅).

4. Executing a call(j’) instruction in program state
(s,Ω) exceeds the stack size |Ω| = `, i.e. causes a stack
overflow.

We say that Π solves P iff the goal condition holds when
the execution of Π on P terminates, i.e. (s, ∅)∧G ⊆ s. Given
a generalized planning problem P = {P1, . . . , PT }, a plan-
ning program Π solves P iff Π solves each planning instance
Pt, 1 ≤ t ≤ T .

2.4 Computing Planning Programs
A classical planner can detect the four failure conditions
defined above, making it particularly suitable for generat-
ing planning programs. We briefly describe here the com-
pilation from generalized planning to classical planning for
computing planning programs [Jiménez and Jonsson, 2015;
Segovia-Aguas et al., 2016a].

Given a generalized planning problem P = {P1, . . . , PT },
the bounds on the number of program lines n, auxiliary pro-
cedures m and stack size `, the compilation outputs a clas-
sical planning problem P `n,m = 〈F `n,m, A`n,m, I`n,m, G`n,m〉
such that any classical plan π that solves P `n,m programs the
instructions of a planning program Π and simulates the exe-
cution of Π on each P1≤t≤T , validating that Π solves P .

In more detail, the set of fluents F `n,m extends F with:

• F `pc = {pcki : 0 ≤ i ≤ n, 1 ≤ k ≤ `} ∪ {prockj : 0 ≤
j ≤ m, 1 ≤ k ≤ `} representing the current line and
procedure.

• F `top = {topk}0≤k≤` representing the top level of the
stack at the current time.

• Fmins encoding the instructions in the main and auxil-
iary procedures, which is formally defined as Fmins =
{insi,j,w : 0 ≤ i ≤ n, 0 ≤ j ≤ m,w ∈ A ∪ Icall ∪
{nil, end}}, where nil indicates that the instruction on
line i of procedure j is empty, i.e. can be programmed.

• done, a fluent marking we are done programming and
executing the planning program.

A`n,m defines the following actions:

• An action wki,j for each action instruction w ∈ A, pro-
gram line i, procedure j and stack level k:

pre(wki,j) = pre(w) ∪ {pcki , topk, prockj },
cond(wki,j) = cond(w) ∪ {∅B {¬pcki , pcki+1}}.

• An action callj
′,k
i,j for each call(j’) ∈ Icall that

pushes a new program line (j′, 0) onto the stack:

pre(callj
′,k
i,j ) ={pcki , topk, prockj },

cond(callj
′,k
i,j ) ={∅B {¬pcki , pcki+1,¬topk, topk+1,

pck+1
0 , prock+1

j′ }}.
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• Actions endk+1
i,j that simulate the termination on line i

of procedure j on stack level k + 1, 0 ≤ k < `:

pre(endk+1
i,j ) ={pck+1

i , topk+1, prock+1
j },

cond(endk+1
i,j ) ={∅B {¬pck+1

i ,¬topk+1,¬prock+1
j ,

topk}}.

The effect is to pop the program line (j, i) from the top
of the stack.

The action set A`n,m contains the following actions:

• For each instruction wki,j , w ∈ A ∪ Icall ∪ {end}, an
action P (wki,j) that programs w, and a repeat action
R(wki,j) that executes w when already programmed:

pre(P (wki,j)) = pre(wki,j) ∪ {insi,j,nil},
cond(P (wki,j)) = {∅B {¬insi,j,nil, insi,j,w}},

pre(R(wki,j)) = pre(wki,j) ∪ {insi,j,w},
cond(R(wki,j)) = cond(wki,j).

• For each planning problem Pt, 1 ≤ t ≤ T , a termination
action termt that simulates the successful termination of
the planning program on Pt when the stack is empty:

pre(termt) =Gt ∪ {top0}, t < T,

cond(termt) ={∅B {¬top0, top1, pc10, proc10}}∪
{{¬f}B {f} : f ∈ It+1}∪
{{f}B {¬f} : f /∈ It+1}, t < T,

pre(termT ) =GT ∪ {top0},
cond(termT ) ={∅B {done}}.

Note that the effect of termt, t < T , is to reset the pro-
gram state to the initial state of problem Pt+1.

The initial state sets all the program lines (main and aux-
iliary procedures) as empty and sets the procedure on stack
level 1 to Π0 (the main procedure) with the program counter
pointing to the first line of that procedure. The initial state on
fluents in F is I1, hence I`n,m = I1 ∪ {insi,j,nil : 0 ≤ i ≤
n, 0 ≤ j ≤ m} ∪ {top1, pc10, proc10}. The goal condition is
defined as G`n,m = {done}.

3 Generating Context-Free Grammars
This section explains our approach to generating CFGs from
input strings using classical planning. We formalize this task
as a tuple 〈Σ, E,m〉, where:
• Σ is the finite set of terminal symbols.
• E = {e1, . . . , eT } is the finite set of input strings con-

taining only terminal symbols: et ∈ Σ∗, 1 ≤ t ≤ T .
• m is a bound on the number of non-terminal symbols
Vm = {v0, . . . , vm}. As a consequence, m implicitly
defines the space of possible rules, Vm → (Vm ∪ Σ)∗.

A solution to this inductive learning task is a CFG G =
〈Vm, v0,Σ, Rm〉 such that, for every e ∈ E, there exists a
parse tree tG,e.

Π0: 0. choose(1|5|8)
1. parse a
2. call(0)
3. parse a
4. end
5. parse b
6. call(0)
7. parse b
8. end

Figure 3: Planning program that represents the CFG in Figure 1(a).

3.1 CFG Generation as Generalized Planning
Our approach for solving 〈Σ, E,m〉 is modeling this task as a
generalized planning task P = {P1, . . . , PT } where each in-
put string et ∈ E corresponds to an individual classical plan-
ning task Pt ∈ P such that 1 ≤ t ≤ T and Pt = 〈F,A, It, Gt〉
is defined as follows:

• F comprises the fluents for modeling input strings as
lists of symbols. These fluents are string(id, σ) and
next(id, id2), where 0 ≤ id, id2 ≤ z, σ ∈ Σ and z is
a bound on the string length. For instance, the string
abba is encoded as:

string(i0, a), string(i1, b), string(i2, b), string(i3, a),
next(i0, i1), next(i1, i2), next(i2, i3), next(i3, i4).

In addition, F includes fluents pos(id), 0 ≤ id ≤ z, to
indicate the current string position, and symb(σ), σ ∈ Σ,
to indicate the symbol at the current string position.

• A contains the actions for parsing the current symbol of
an input string. There is a parseσ action for each sym-
bol σ ∈ Σ, e.g. A = {parsea, parseb} for the CFG of
Figure 1(a). Action parseσ recognizes that σ is at the
current position of the string and advances the position.

pre(parseσ) = {symb(σ)},
cond(parseσ) = {{pos(i1), next(i1, i2), string(i2, σ

′)}B
{¬pos(i1), pos(i2),¬symb(σ), symb(σ′)} : ∀i1, i2, σ

′}.

• It contains the fluents encoding the t-th string, et ∈ E,
and its initial position pos(0).

• Gt requires that et is parsed, i.e. Gt = {pos(|et|)}.
According to this definition, a solution to a generalized

planning problem P that models a CFG generation task
〈Σ, E,m〉 parses every et ∈ E.

3.2 Computing CFGs with Classical Planning
To compute CFGs with classical planning we first extend the
planning program formalism, so that it can represent CFGs.
Then we adapt the generalized planning compilation for com-
puting the extended planning programs with an off-the-shelf
classical planner.

Our extension of the planning program formalism aug-
ments its instruction set I with choice instructions. Choice
instructions are intended to jump to a target line of a planning
program and are defined as Ichoice = {choose(Target)},
where Target ⊆ {1, . . . , n} is a subset of possible target
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program lines. Figure 3 shows a planning program with a
choice instruction that encodes the CFG in Figure 1(a). In this
example instruction choose(1|5|8) represents a jump to
one of these three possible targets, line 1, line 5 or line 8.

The execution model for planning programs with choice
instructions behaves as explained in Section 2.3. The con-
ditions for termination and success are the same as in the
original planning program formalism. The only new behavior
that has to be defined is the execution of choice instructions.
The execution of an instruction wji = choose(Target) on
line i of procedure Πj actively chooses to jump to a new line
i′ ∈ Target, changing the program state from (s,Ω⊕ (j, i))
to (s,Ω⊕ (j, i′)).

The representation of CFGs with planning programs is
done associating each non-terminal symbol vj ∈ Vm with a
planning program Πj . Choice instructions always appear on
the first line of Πj and represent possible jumps to the lines
coding the grammar rules, vj → (vj ∪ Σ)∗, associated to the
corresponding non-terminal symbol. Initially, the subset of
target program lines only includes 1 and n, i.e. choose(1|8)
for the example in Figure 3. Whenever we program an end in-
struction on a line i, we add i+ 1 to the subset of target lines,
leading to the choice instruction choose(1|5|8) in Figure 3.

The compilation takes as input a CFG generation task
〈Σ, E,m〉 such that |et| ≤ z for each et ∈ E, a number
of program lines n and a stack size `, and outputs a classical
planning instance P `,zn,m = 〈F `,zn,m, A`,zn,m, I`,zn,m, G`,zn,m〉. The
compilation is almost identical to the compilation described
in the previous section; the only relevant difference is that
A`,zn,m includes actions for simulating the execution of choice
instructions choose(Target)ki′,j , where i′ ∈ Target:

pre(choose(Target)ki′,j) = {pck0 , topk, prockj , ins0,j,choose},

cond(choose(Target)ki′,j) = {∅B {¬pck0 , pcki′}}.

Lemma 1. Any classical plan π that solves P `,zn,m induces a
valid model G = 〈Vm, v0,Σ, Rm〉 for the CFG generation
task 〈Σ, E,m〉.

Proof sketch. Once the instructions of a planning program
Π = {Π0, . . . ,Πm} are programmed they can only be ex-
ecuted. The classical plan π has to program the instructions
(if not yet programmed) of Π and simulate its execution, ac-
tively choosing the jumps defined by the choice instructions
and their corresponding subsets of target lines. This simula-
tion is done for the planning task Pt encoding the t-th string
in E and the active choice corresponds exactly to the con-
struction of the parse tree for the t-th string. If this is done
for every 1 ≤ t ≤ T , the CFG induced by π satisfies the so-
lution condition for the solutions of the CFG generation task
〈Σ, E,m〉.

3.3 Parsing and Production with Planning
String production and string parsing for arbitrary CFGs can
also be addressed using our compilation and an off-the-shelf
classical planner.

Parsing. Let e /∈ E be a new string, and let Pe =
〈F `,zn,m, A`,zn,m, Ie, Ge〉 be the classical planning instance for

parsing the string e, i.e. instantiated on the planning frame as
the problem P `,zn,m. In this case we can use a classical planner
to determine whether e ∈ L(G).

Our approach is to specify G in the initial state of Pe, mak-
ing initially true the fluents insi,j,w that correspond to the
planning program that encodes G, and ignoring the actions
P (wki,j) for programming instructions. A solution plan πe to
Pe is then constrained to the actions that execute the instruc-
tions specified by G and represents a parse tree tG,e. Essen-
tially, parsing consists in correctly choosing the target pro-
gram line i′ each time a choice instruction is executed.

Interestingly parsing can also be understood as activ-
ity recognition using plan libraries that are in the form of
CFGs [Ramirez and Geffner, 2016].

Production. We can produce a string e ∈ L(G) using our
compilation and an off-the-shelf classical planner.

Again we use a classical planning instance Pe that repre-
sents the parsing of example e with G also specified in the
initial state of Pe and ignoring the actions for programming
instructions. The difference with the previous task is that here
the linked list that encodes the string e is initially empty (the
corresponding fluents are false at Ie). This list is filled up,
symbol by symbol, by the actions that execute G until reach-
ing the end of the string. To do so actions parseσ are replaced
with actions produceσ that add symbol σ ∈ Σ at the current
position of the string. Formally, produceσ is defined as:

pre(produceσ) = {active},
cond(produceσ) = {{pos(i1)}B {string(i1, σ)} : ∀i1}
∪ {{pos(i1), next(i1, i2)}B {¬pos(i1), pos(i2)} : ∀i1, i2}
∪ {{pos(i1), next(i1, z)}B {¬active} : ∀i1, i2},

where active is a fluent that keeps track of whether we have
reached the end of the string to be generated.

Text production using grammars and classical planning is
a well studied task [Schwenger et al., 2016; Koller and Hoff-
mann, 2010]. This task is also related to the compilation of
domain-specific control knowledge for planning [Baier et al.,
2007; Alford et al., 2009].

4 Evaluation
We designed two types of experiments: (1) Generation, for
computing CFGs compliant with a set of input strings and (2),
Recognition for parsing unseen input strings given a CFG. All
the experiments are run on an Intel Core i5 3.10 GHz x 4
with 4 GB of RAM, using the classical planner Fast Down-
ward [Helmert, 2006], with the LAMA-2011 configuration,
and a planning time limit of 600 seconds.

We created six domains that correspond to CFGs with dif-
ferent structure and alphabet. The domain AnBn corresponds
to theAnBn language. The Parenthesis domain corresponds
to the strings that can be formed following one of two well-
balanced parenthesis distributions, sequential ()() . . . or en-
closing ((. . .)). Parenthesis Multiple corresponds to the
enclosing well-balanced parenthesis distribution but using a
larger alphabet, Σ = {(, {, [, ], }, )}. In the Binary Arith-
metics domain the alphabet contains two possible binary val-
ues {0, 1} and two operators {+,−}, and corresponds to the
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language of the arithmetic expressions composed by an arbi-
trary binary number, an operator and another binary number.
For Arithmetics the alphabet includes the values {0, . . . , 9}
and the operators {+,−, ∗, /}, and the language is the set
of expressions formed as decimal number, operator and dec-
imal number. Finally, a simplified English Grammar that
includes Sentence, Noun Phrase and Verb Phrase as non-
terminal symbols while adjective, adverb, noun and verb are
terminal symbols.

Table 1 shows the results of the Generation tasks. For each
domain we report the numberm of non-terminal symbols, the
size of the stack, the procedure lines (per non-terminal sym-
bol), the number of input strings (per non-terminal symbol)
and the planning time for computing each procedure corre-
sponding to a non-terminal symbol.

m Stack Lines Strings Time(s)
AnBn 1 5 5 1 0.3
Parenthesis 1 5 5 2 0.4
P. Multiple 1 5 12 3 53.1
Binary A. 2 4 (6,8) (4,2) (0.6,1.8)
Arithmetics 4 8 (20,8,3,4) (10,4,1,4) (10.3,3.7,

3.5,14.6)
E. Grammar 3 10 (6,3,3) (2,1,1) (1.4,0.3,1.9)

Table 1: Generation task results.

The Generation results show that non-terminal symbols are
used with two aims: i) abstracting a set of terminal symbols,
e.g. the first procedure of the Arithmetics domain (with 20
lines, learned from 10 strings in 10.3 seconds) processes any
digit in the set {0, . . . , 9}; ii) grouping multiple rules, e.g. in
English Grammar one procedure represents a Noun Phrase
(NP ) that is composed of one or more adjectives (a) and a
noun (n), so it computes the rules NP → an|aNP .

Table 2 shows the results for the Recognition tasks. In these
experiments the CFGs grammars are given so we explore the
performance of our approach using larger stack sizes. For
each domain we report the size of the stack (which limits the
max depth of the possible parse trees), the number of strings,
and the total planning time required for parsing the strings.

Stack Strings Time(s)
AnBn 51 1 70.67
Parenthesis 52 1 19.29
P. Multiple 52 1 129.19
Binary A. 15 2 62.87
Arithmetics 25 4 137.76
E. Grammar 92 1 325.44

Table 2: Recognition task results.

5 Related work
The learning of CFGs can also be understood in terms of ac-
tivity recognition, such that the library of activities is for-
malized as a CFG, the library is initially unknown, and the
input strings encode observations of the activities to recog-
nize. Activity recognition is traditionally considered indepen-
dent of the research done on automated planning, using hand-
crafted libraries of activities and specific algorithms [Ravi

et al., 2005]. An exception is the work by Ramı́rez and
Geffner [2009; 2010] where goal recognition is formulated
and solved with planning. As far as we know our work is the
first that tightly integrates the tasks of (1) grammar learning,
(2) recognition and (3) production using a common planning
model and an off-the-shelf classical planner.

Hierarchical Task Networks (HTNs) is a powerful formal-
ism for representing libraries of plans [Nau et al., 2003].
HTNs are also defined at several levels such that the tasks
at one level are decomposed into other tasks at lower levels
with HTN decomposition methods sharing similarities with
production rules in CFGs. There is previous work in gener-
ating HTNs [Hogg et al., 2008; Lotinac and Jonsson, 2016]
and an interesting research direction is to extend our approach
for computing HTNs from flat sequences of actions. This aim
is related to Inductive Logic Programming (ILP) [Muggleton,
1999] that learns logic programs from examples. Unlike logic
programs (or HTNs) the CFGs that we generate are proposi-
tional and do not include variables. Techniques for learning
high level state features that include variables are promising
for learning lifted grammars [Lotinac et al., 2016].

6 Conclusions
There is exhaustive previous work on learning CFGs given
a corpus of correctly parsed input strings [Sakakibara, 1992;
Langley and Stromsten, 2000] or using positive and negative
examples [De la Higuera, 2010; Muggleton et al., 2014]. This
work addresses generating CFGs using only a small set of
positive examples (in some cases even one single string that
belongs to the language). Furthermore we follow a compi-
lation approach that benefits straightforwardly from research
advances in classical planning and that is also suitable for
production and recognition tasks with arbitrary CFGs.

Our compilation bounds the number of rules m, the length
of these rules n, the size of the stack ` and the length of the
input strings z. If these bounds are too small, the classical
planner used to solve the output planning task will not be able
to find a solution. Larger values for these bounds do not for-
mally affect to our approach, but in practice, the performance
of classical planners is sensitive to the size of the input. Inter-
estingly our approach can also follow an incremental strategy
where we generate the CFG for a given sub-language and then
encode this sub-grammar as an auxiliary procedure for gener-
ating more challenging CFGs [Segovia-Aguas et al., 2016b].

The size of the compilation output also depends on the
number of examples. Empirical results show that our ap-
proach is able to generate non-trivial CFGs from very small
data sets. Another interesting extension would be to add neg-
ative input strings, which would require a mechanism for vali-
dating that a given CFG does not generate a given string, or to
accept incomplete input strings that would require combining
the generation and production mechanisms.
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