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Abstract

Building architectures for autonomous rational behav-
ior requires the integration of several AI components,
such as planning, learning and execution monitoring. In
most cases, the techniques used for planning and learn-
ing are tailored to the specific integrated architecture,
so they could not be replaced by other equivalent tech-
niques. Also, in order to solve tasks that require looka-
head reasoning under uncertainty, these architectures
need an accurate domain model to feed the planning
component. But the manual definition of these models
is a difficult task. In this paper, we propose an archi-
tecture that uses off-the-shelf interchangeable planning
and learning components to solve tasks that require flex-
ible planning under uncertainty. We show how a rela-
tional learning component can be applied to automati-
cally obtain accurate probabilistic action models from
executions of plans. These models can be used by any
classical planner that handles metric functions, or, al-
ternatively, by any decision theoretic planner. We also
show how these components can be integrated to solve
tasks continuously, under an online relational learning
scheme.

Introduction
There have been many approaches in the literature for build-
ing architectures for autonomous rational behavior. Fre-
quently, these architectures include in their components
modules for reasoning (among others based on planning,
rules and/or search), and learning (among others based on
acquiring the domain model and/or some heuristics). In
most cases, the reasoning and learning techniques used are
extensively tailored to the specific integrated architecture.
Therefore, if new more powerful reasoning techniques that
could solve the same tasks come up, it requires some pro-
gramming effort to replace them.

Moreover, these architectures need complex action mod-
els representing all the potential execution outcomes for
solving tasks that require lookahead reasoning under uncer-
tainty (deliberative instead of reactive reasoning). The man-
ual specification of these models is a difficult task. There-
fore, a practical approach has been using classical planning
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without considering any information about the probability of
success of actions in the plans, and re-planning when neces-
sary (Yoon, Fern, & Givan 2007). But, since they do not
consider information about the probability of success, they
present the drawback of leading to non-robust plans. They
might lead to dead-ends or dangerous situations to the ex-
ecuting agent, as well as missing opportunities for better
plans.

In this paper, we propose an architecture based on the
integration of off-the-shelf interchangeable planning and
learning components to overcome the previous shortcom-
ings. Specifically, this architecture follows a cycle of: (1)
planning with an STRIPS model to generate sequences of ac-
tions; (2) execution of the plans and tagging of executions
as success, failure or dead-end; and (3) learning
patterns for predicting these outcomes and compiling them
into a new action model valid for off-the-shelf planners. The
learning component is a relational technique that is used to
automatically obtain accurate probabilistic domain models
from execution of plans that can be used by any classical
planner that handles metric functions, or, alternatively, by
any decision theoretic planner. We show how these com-
ponents can be integrated to solve tasks continuously, under
an online relational learning scheme. Experimental results
show how both kinds of planners (classical and decision the-
oretic ones) can benefit from their integration with that rela-
tional learning component.

The first section describes in detail the architecture. The
second section shows the experimental results obtained us-
ing the test bed of the probabilistic track of the International
Planning Competition (IPC).1 Finally, the fourth and fifth
sections present related work and conclusions.

Integrating planning, execution and learning
This section describes the PELA (Planning, Execution and
Learning Architecture) architecture (Figure 1).

Planning
We start planning with an off-the-shelf classical planner and
a STRIPS domain model described in PDDL (Fox & Long
2003) that contains no information about the uncertainty
of the world. Once we start executing actions PELA will

1http://ipc.icaps-conference.org/
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Figure 1: Overview of the PELA Architecture.

learn from its performance and upgrade the domain model to
consider probabilistic information about actions outcomes.
Therefore, in the following cycles, the planner can use this
information to obtain more robust plans.

Execution
Actions are executed in sequence as they appear in the plan.
We assume that the outcome of executing actions in the en-
vironment is correctly observed. When the execution of an
action does not correspond to its STRIPS model we re-plan
to solve the planning task in this new scenario. After an ac-
tion ai is executed in a state si, the execution is tagged with
a tag ti as:
1. successwhen the outcome of executing the action matches its

STRIPS model;

2. failure when the outcome of executing the action does not
match the model, but the task goals can still be achieved by re-
planning; or

3. dead-end when the outcome of executing the action does not
match the domain model, and re-planning can no longer achieve
the planning goals.

Learning
Once a set of tagged actions executions has been gathered,
we look for patterns of the performance of the actions. A
very well-known approach to find patterns of a concept con-
sists of building the smallest decision tree that fits a set of
examples of the target concept. Given that off-the-shelf
planners represent knowledge relationally, we need to find
relational patterns of the actions performance. In our ex-
periments we are using TILDE (Blockeel & Raedt 1998),
which implements a relational version of the (TDIDT) al-
gorithm. But, there is nothing that prevents one from using
any other off-the-shelf relational learning tool that generates
a relational model of the actions performance (in terms of
the three classes success, failure or dead-end).

Relational tree learning Relational decision trees contain
logic queries about the relational facts holding in them. In
PELA, a relational decision tree is learned for every action in
the planning domain. When building each tree, the learning
component receives two inputs:
• The language bias specifying the restrictions in the variables of

the predicates to constrain their instantiation. Figure 2 shows the
language bias specified for learning the patterns of the perfor-
mance of the action move-car(Origin,Destiny) from

the tireworld domain.2 This bias is automatically extracted from
the STRIPS domain definition: (1) the types of the target concept
are extracted from action definition and (2) the types of the rest
of the literals are extracted from the predicate definitions.

% The target concept

type(move-car(example,location,location,class)).

classes([success,failure,deadend]).

% The domain predicates

type(vehicle-at(example,location)).

type(spare-in(example,location)).

type(road(example,location,location)).

type(not-flattire(example)).

Figure 2: Example of language bias.

• The knowledge base, specifying the set of examples of the
target concept, and the background knowledge. In PELA,
both are extracted from the tagged executions collected in
the previous step. Figure 3 shows a piece of the knowledge
base for learning the patterns of performance of the action
move-car(Origin,Destiny). Particularly, this example
captures an execution example with id e0 that resulted in failure
going from location n00 to n11. The background knowledge
captures the set of literals holding in the state before the action
was executed (literals of the predicates not-flattire, vehicle-at,
road, and spare-in). The action execution (example of target
concept) is linked with the state literals (background knowledge)
through an identifier that represents the execution instance, e0.
The instantiated action is also augmented with the label that de-
scribes the class of the learning example (success, failure
or dead-end).

% The example

move-car(e0,n00,n11,failure).

% The background knowledge

spare-in(e0,n11). spare-in(e0,n21). spare-in(e0,n22).

not-flattire(e0). vehicle-at(e0,n00). road(e0,n22,n21).

road(e0,n00,n11). road(e0,n11,n10). road(e0,n10,n20).

road(e0,n10,n21). road(e0,n11,n22). road(e0,n21,n20).

road(e0,n00,n10).

Figure 3: Knowledge base corresponding to example e0.

Each branch of the learned decision tree will represent a
pattern of performance of the corresponding action:
• the internal nodes of the branch contain the set of conditions

under which the pattern of performance is true.

• the leaf nodes contain the corresponding class; in this case,
the performance of the action (success, failure or
dead-end) and the number of examples covered by the pat-
tern.

Figure 4 shows the decision tree learned for the action
move-car(Origin,Destiny) using 352 tagged ex-
amples. This tree says that when there is a spare wheel at
Destiny, the action move-car(Origin,Destiny),

2In the tireworld a car needs to move from one location to an-
other. The car can move between different locations via directional
roads. For each of the movements there is a probability of getting
a flat tire. A flat tire can be replaced with a spare one; however,
some locations do not contain spare tires.
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failed 97 over 226 times, while when there is no spare-wheel
at Destiny, it caused an execution dead-end in 62 over 126
times.

move-car(-A,-B,-C,-D)

spare-in(A,C) ?

+--yes: [failure] [[success:97.0,failure:129.0,deadend:0.0]]

+--no: [deadend] [[success:62.0,failure:0.0,deadend:64.0]]

Figure 4: Example of relational decision tree.

Once a tree ti is built for every action ai in the STRIPS
domain model, the patterns of performance of the actions
are compiled into a new action model that allows off-the-
shelf planners to (1) avoid execution dead-ends and (2) rea-
son about the robustness of actions. In this work we present
and evaluate two different compilations of these patterns:

Compilation to a metric representation Each ti is com-
piled together with the STRIPS model of ai into a new action
model with conditional effects:
1. The parameters and preconditions of the STRIPS model remain

the same.

2. The effects: each branch bj of the tree ti is compiled into a
conditional effect ceji=(when Bj Eji) where:

(a) Bj=(and bj1...bjn), where bjk are the relational tests of the
internal nodes of branch bj (in the tree of Figure 4 there is
only one test, referring to spare-in(A,C));

(b) Eji=(and {effects(ai) ∪ (increase (fragility) fj)});
(c) effects(ai) are the STRIPS effects of action ai; and
(d) (increase (fragility) fj) is a new literal which increases the

cost metric fragility in fj units. The value of fj is com-
puted as:
• when bj does not cover execution examples resulting in

dead-ends,
fj = −log(s/t)

where s refers to the number of execution examples, covered
by bj , resulting in success, and t refers to the total amount
of examples that bj covers;

• when bj covers execution examples resulting in dead-ends

fj =∞

So, planners will try to avoid these situations because of
their high cost.

Intuitively, maximizing a metric indicating the product of
the probability of success of actions should allow an off-the-
shelf planner to find robust plans. However, off-the-shelf
planners do not deal very efficiently with minimizing prod-
ucts of values. Instead, existing planners are better designed
to minimize the sum of cost values. Thus, we define the
fragility cost metric regarding the following property of log-
arithms: log(a) + log(b) = log(a ∗ b). Therefore, the mini-
mization of the sum of the negative logarithms of the success
probabilities accumulated throughout the plan is equivalent
to maximizing the product of action success probabilities.

Figure 5 shows the result of compiling the decision tree
of Figure 4. In this case the tree is compiled into two
conditional effects. Given that there is only one test on
each branch, each new conditional effect will only have one

condition (spare-in or not(spare-in)). As it does not cover
dead-end examples, the first branch increases the fragility
cost in −log(97/(97 + 129)). The second branch covers
dead-end examples, so it increases the fragility cost in∞
(or a sufficiently big number; in this case 999999999).

(:action move-car

:parameters ( ?v1 - location ?v2 - location)

:precondition (and (vehicle-at ?v1) (road ?v1 ?v2)

(not-flattire))

:effect

(and

(when (and (spare-in ?v2))

(and (increase (fragility) 0.845)

(vehicle-at ?v2) (not (vehicle-at ?v1))))

(when (and (not (spare-in ?v2)))

(and (increase (fragility) 999999999)

(vehicle-at ?v2) (not (vehicle-at ?v1))))))

Figure 5: Compilation into a metric representation.

Compilation to a probabilistic representation In this
case the ti are compiled together with the STRIPS model of
ai into a new action model with probabilistic effects. This
compilation is defined as before, except that:
1. Eji=(probabilistic pj effects(ai));

2. pj is the probability value and it is computed as:

• when bj does not cover execution examples resulting in dead-
ends,

pj = s/t

where s refers to the number of success examples covered by
bj , and t refers to the total amount of examples that bj covers;

• when bj covers execution examples resulting in dead-ends,

pj = 0.001

therefore, probabilistic planners try to avoid these situations
because of their low probability of success.

Figure 6 shows the result of compiling the decision tree of
Figure 4 of the action move-car(Origin,Destiny).
In this compilation, the two branches are coded as two prob-
abilistic effects. As the first one does not cover dead-end
examples, it has a probability of (97/(97 + 129)). As the
second branch covers dead-end examples, it has a proba-
bility of 0.001.

Both compilations augment the size of the initial STRIPS
model, meaning longer planning times. Specifically, the in-
crease in size is proportional to the number of leaf nodes of
the learned trees. One can control the size of the resulting
trees by using declarative biases as the amount of tree prun-
ing desired. However, extensive pruning may result in a less
robust behavior as leaf nodes would not be so fine grained.

Experimental evaluation
This section presents the experimental results obtained by
PELA in two different domains:
• Triangle Tireworld (Little & Thibaux 2007). In this version of

the tireworld both the origin and the destination locations are at
the vertex of an equilateral triangle, the shortest path is never the
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(:action move-car

:parameters ( ?v1 - location ?v2 - location)

:precondition (and (vehicle-at ?v1) (road ?v1 ?v2)

(not-flattire))

:effect

(and

(when (and (spare-in ?v2))

(probabilistic 0.43

(and (vehicle-at ?v2)

(not (vehicle-at ?v1)))))

(when (and (not(spare-in ?v2)))

(probabilistic 0.001

(and (vehicle-at ?v2)

(not (vehicle-at ?v1)))))))

Figure 6: Compilation into a probabilistic representation.

most probable one to reach the destination, and there is always a
longer trajectory that avoids execution dead-ends. Therefore, an
off-the-shelf planner using a STRIPS action model will generally
not take the most robust path.

• Slippery-gripper (Hanna M. Pasula & Kaelbling 2007). This
domain is a version of the four-actions blocksworld (pick-up,
put-down, stack, unstack) with a nozzle to paint the
blocks. Painting a block may wet the gripper, which makes it
more likely to fail when manipulating the blocks. The gripper
can be dried to move blocks safer. Generally, an off-the-shelf
classical planner will not choose the dry action, because it in-
volves longer plans.

Correctness of the learned models
This experiment evaluates the correctness of the learned
models. Particularly, we compared the accuracy of the mod-
els obtained by three different strategies for collecting ex-
perience. For each strategy we planned for 25 randomly-
generated planning problems and executed no more than 50
actions for solving each problem.
1. FF: the examples are collected executing the actions proposed

by the deterministic planner Metric-FF (Hoffmann 2003);

2. LPG: the stochastic planner LPG (Gerevini & Serina 2002) is
used instead; and

3. Random: the actions to execute are chosen randomly.

For all the strategies, the execution of actions is performed
in the simulator provided by the probabilistic track of the
IPC and after every 50 executions a model is learned, com-
piled and evaluated. The learned models are evaluated com-
puting the absolute difference between the probabilities of
success and dead-end of each action in the learned model
and their true value in the perfect model (the one used in the
simulator). Each measure is the average of the differences
in a test set of 500 random situations.

Figure 7 shows the results obtained by
PELA when learning the models for the ac-
tions move-car(location,location) and
pickup(block,block) from the tireworld and
the slippery-gripper domains respectively. These actions
are taken as examples because their probabilities of success
or dead-ends depend on the current state of the environ-
ment. In both cases the convergence values show that the

experienced gathered with the random strategy is richer,
given that classical planners avoid selecting some actions
because they make the plans longer. This effect is stronger
in the Metric-FF planner, because it is deterministic. So,
as expected, strategies that generate a wider diversity of
plans improve the convergence rate, with the penalty of
potentially exploring dangerous parts of the problem space.

Figure 7: Error of the learned and compiled models.

PELA offline performance
This experiment evaluates the performance of PELA when
there are no constraints for collecting the learning examples.
In this case, PELA also starts from a PDDL STRIPS version
of the domains, and tries to solve test problems using the ac-
tion model obtained by the Random strategy with 500 learn-
ing examples. The set of test problems consists of 15 prob-
lems for each domain of increasing difficulty. Each problem
is attempted 30 times, and we measured the average of the
obtained results by four different planning configurations:
1. STRIPS. Metric-FF plans with the PDDL STRIPS action model

and re-plans when necessary. This configuration was the unof-
ficial winner of the last probabilistic planning competition. It
corresponds to the classical re-planning approach, that uses a
STRIPS action model without any learning. It serves as the base-
line for comparison;

2. PELA + Metric Compilation. The PELA architecture using
Metric-FF as the planner, and the action model resulting from
compiling into a metric (classical) representation;

3. PELA + Probabilistic Compilation. PELA using the probabilistic
planner GPT (Bonet & Geffner 2005) and the PPDDL action
model resulting from the probabilistic compilation;3

3PPDDL is the probabilistic version of PDDL defined for the
probabilistic track of the IPC.
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4. Perfect model. The probabilistic planner GPT plans with the ex-
act PPDDL probabilistic domain model. This configuration is
hypothetical, given that in many planning domains the perfect
probabilistic action model is unavailable. Thus, it only serves as
a reference to show how far we are from near to optimal solu-
tions with respect to robustness.

In the triangle tireworld (Figure 8), PELA solves more
problems than classical planning and re-planning with both
compilations. We are still behind the use of a perfect model.
In the slippery-gripper there are no execution dead ends so
all configurations solve all problems. In this domain, we
measure the number of actions needed to solve a problem,
where fewer actions means more robust plans. Figure 9,
shows that overall PELA solves problems with fewer actions
than classical re-planning. This is always true for the prob-
abilistic compilation, and true except for three cases for the
metric compilation. This might be caused by the fact that
the planner we use after learning, Metric-FF, is non-optimal.
But, even in this situation, PELA saves a 9% of the accumu-
lated number of actions and 15% of the accumulated time.

In general terms, PELA handles more complex action
models, which may increase the planning time, as happens
in the tireworld. However, this increase in complexity can
be widely worthy in domains where re-planning (like the
slippery-gripper) or reaching dead-end states (like the tire-
world) is expensive and a perfect domain model is “a priori”
unavailable.

Figure 8: Test problems from triangles of size 3 (problem1)
to size 17 (problem 15).

PELA online performance
This experiment evaluates the performance of PELA when
the action models are learned, updated and used online.

Figure 9: Test problems from 5 blocks (problem1) to 15
blocks (problem 15).

In the online configuration, the Random strategy for col-
lecting experience is inappropriate because it ignores the ac-
tion model and makes PELA not solving the planning tasks.
Instead, for the online configuration we used the planner
LPG because (1) it is able to solve planning tasks, and
(2) according to the learning correctness experiments (Fig-
ure 7), it provides a potential richer exploration than plan-
ners with deterministic behavior such as FF or GPT. The
online configuration of PELA performs a learning and com-
pilation step every 50 executed actions (50 examples). Each
learning and compilation step is tested against five problems
of medium difficulty that are attempted 30 times each.

Figure 10 shows the experimental results and again, since
in the slippery-gripper domain, there are no execution dead
ends we measure the total number of actions needed to solve
the test problems. In both domains the first iterations gen-
erate action models that are strongly biased towards the few
examples available. These models initially mislead the plan-
ning process towards bad quality solutions. But, eventually
the quality of the plans improves as more experience is avail-
able: more problems solved in the Triangle Tireworld and
less actions used in the slippery-gripper.

Related work
There is extensive prior work on general architectures for
reasoning, execution and learning, ranging from execution-
oriented, as in robotics applications (Peterson & Cook
2003), to more cognitive-oriented (Rosenbloom, Newell, &
Laird 1993). Among them, the more relevant example to
our work is ROGUE (Haigh & Veloso 1998) which learned
propositional decision trees and used them as control rules
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Figure 10: Planning with patterns learned online.

for the PRODIGY architecture (Veloso et al. 1995). How-
ever, very few architectures have learned relational represen-
tations and have used standard relational languages as PDDL
or PPDDL for reasoning and learning, so that different plan-
ning and/or learning techniques can be directly plugged-in.

Additionally, this work is related to two other research
lines also concerned with decision-making, execution and
learning:
• Model-free relational reinforcement learning(RRL) (Dzeroski,

Raedt, & Blockeel 1998). Unlike our approach, the knowledge
learned solving a given task with RRL techniques can not be im-
mediately transferred for similar tasks within the same domain
(though currently several RL transfer learning techniques work
on this direction). Moreover as our approach delegates the deci-
sion making to off-the-shelf planners it allows us to solve more
complex problems requiring reasoning about time or resources.

• Model learning of probabilistic actions (Hanna M. Pasula &
Kaelbling 2007). These models are more expressive because
they capture all possible outcomes of actions. However, they
are more expensive to be learned and require specific planning
and learning algorithms. Instead, our approach captures uncer-
tainty of the environment using existing standard machine learn-
ing techniques and compiles it into standard planning models
that can be directly fed into different off-the-shelf planners.

Conclusions
We have presented the PELA architecture which integrates
planning, execution and learning in a continuous cycle:
PELA plans with a STRIPS model of the environment, and
automatically updates it when more execution experience
is available. The update is performed by learning: (1)
situation-dependent probabilities of the nominal effects; and
(2) predictions of execution dead-ends. This update focuses
on the nominal effects of actions, because our approach is
oriented towards using off-the-shelf classical planners.

Our integration of planning and learning allows PELA to
address planning tasks under uncertainty more robustly than

the traditional classical re-planning approach. Moreover,
since PELA is based on interchangeable off-the-shelf plan-
ning and learning components, it can profit from the last
advances in both fields without modifying the architecture.
And even more, the off-the-shelf spirit of the architecture al-
lows PELA to use diverse planning paradigms or change the
learning component to acquire other useful planning infor-
mation, such as the actions duration (Lanchas et al. 2007).

The experiments revealed that a random exploration of
the environment improves the models accuracy, though this
could be unavailable for many domains. In these cases, the
use of a planner with stochastic behavior (such as LPG) is
preferred given that it provides diversity to the learning ex-
amples, as well as less dangerous explorations before cap-
turing the probabilistic knowledge.
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