
1024

Learning-Based Planning

Sergio Jiménez Celorrio

Universidad Carlos III de Madrid, Spain

Tomás de la Rosa Turbides

Universidad Carlos III de Madrid, Spain

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Automated Planning (AP) studies the generation of 

action sequences for problem solving. A problem in AP 

is defined by a state-transition function describing the 

dynamics of the world, the initial state of the world and 

the goals to be achieved. According to this definition, 

AP problems seem to be easily tackled by searching 

for a path in a graph, which is a well-studied problem. 

However, the graphs resulting from AP problems are 

so large that explicitly specifying them is not feasible. 

Thus, different approaches have been tried to address 

AP problems.  Since the mid 90’s, new planning al-

gorithms have enabled the solution of practical-size 

AP problems.  Nevertheless, domain-independent 

planners still fail in solving complex AP problems, as 

solving planning tasks is a PSPACE-Complete problem 

(Bylander, 94). 

How do humans cope with this planning-inherent 

complexity?  One answer is that our experience allows 

us to solve problems more quickly; we are endowed 

with learning skills that help us plan when problems 

are selected from a stable population. Inspire by this 

idea, the field of learning-based planning studies the 

development of AP systems able to modify their per-

formance according to previous experiences. 

Since the first days, Artificial Intelligence (AI) has 

been concerned with the problem of Machine Learning 

(ML). As early as 1959, Arthur L. Samuel developed 

a prominent program that learned to improve its play 

in the game of checkers (Samuel, 1959).  It is hardly 

surprising that ML has often been used to make changes 

in systems that perform tasks associated with AI, such 

as perception, robot control or AP. This article analy-

ses the diverse ways ML can be used to improve AP 

processes. First, we review the major AP concepts and 

summarize the main research done in learning-based 

planning. Second, we describe current trends in applying 

ML to AP. Finally, we comment on the next avenues 

for combining AP and ML and conclude.

BACKGROUND

The languages for representing AP tasks are typically 

based on extensions of first-order logic.  They encode 

tasks using a set of actions that represents the state-

transition function of the world (the planning domain) 

and a set of first-order predicates that represent the 

initial state together with the goals of the AP task (the 

planning problem).  In the early days of AP, STRIPS 

was the most popular representation language. In 1998 

the Planning Domain Definition Language (PDDL) 

was developed for the first International Planning 

Competition (IPC) and since that date it has become 

the standard language for the AP community.  In PDDL 

(Fox & Long, 2003), an action in the planning domain 

is represented by: (1) the action preconditions, a list 

of predicates indicating the facts that must be true so 

the action becomes applicable and (2) the action post-

conditions, typically separated in add and delete lists, 

which are lists of predicates indicating the changes in 

the state after the action is applied. 

Before the mid ‘90s, automated planners could only 

synthesize plans of no more than 10 actions in an ac-

ceptable amount of time. During those years, planners 

strongly depended on speedup techniques for solving 

AP problems. Therefore, the application of search 

control became a very popular solution to accelerate 

planning algorithms. In the late 90’s, a significant scale-

up in planning took place due to the appearance of the 

reachability planning graphs (Blum & Furst, 1995) 

and the development of powerful domain independent 

heuristics (Hoffman & Nebel, 2001) (Bonet & Geffner, 

2001). Planners using these approaches could often 

synthesize 100-action plans just in seconds. 



  1025

Learning-Based Planning

L
 At the present time, there is not such dependence 

on ML for solving AP problems, but there is a renewed 

interest in applying ML to AP motivated by three factors: 

(1) IPC-2000 showed that knowledge-based planners 

significantly outperform domain-independent planners. 

The development of ML techniques that automatically 

define the kind of knowledge that humans put in these 

planners would bring great advances to the field.  (2) 

Domain-independent planners are still not able to cope 

with real-world complex problems. On the contrary, 

these problems are often solved by defining ad hoc plan-

ning strategies by hand. ML promises to be a solution to 

automatically defining these strategies. And, (3) there is 

a need for tools that assist in the definition, validation 

and maintenance of planning-domain models. At the 

moment, these processes are still done by hand.

LEARNING-BASED PLANNING

This section describes the current ML techniques 

for improving the performance of planning systems. 

These techniques are grouped according to the target 

of learning: search control, domains-specific planners, 

or domain models. 

Learning Search Control

Domain-independent planners require high search ef-

fort, so search-control knowledge is frequently used 

to reduce this effort. Hand-coded control knowledge 

has proved to be useful in many domains, however 

is difficult for humans to formalize it, as it requires 

specific knowledge of the planning domains and the 

planner structure.  Since AP’s early days, diverse 

ML techniques have been developed with the aim of 

automatically learning search-control knowledge.  A 

few examples of these techniques are macro-actions 

(Fikes, Hart & Nilsson, 1972), control-rules (Borrajo 

& Veloso, 1997), and case-based and analogical plan-

ning (Veloso, 1994). 

At the present, most of the state-of-the-art planners 

are based on heuristic search over the state space (12 

of the 20 participants in IPC-2006 used this approach). 

These planners achieve impressive performance in 

many domains and problems, but their performance 

strongly depends on the definition of a good domain-

independent heuristic function.  These heuristics are 

computed solving a simplified version of the planning 

task, which ignores the delete list of actions.  The solu-

tion to the simplified task is taken as the estimated cost 

for reaching the task goals. These kinds of heuristics 

provide good guidance across the wide range of different 

domains. However, they have some faults: (1) in many 

domains, these heuristic functions vastly underestimate 

the distance to the goal leading to poor guidance, (2) 

the computation of the heuristic values of the search 

nodes is too expensive, and (3) these heuristics are 

non-admissible so heuristics planners do not find good 

solutions in terms of plan quality.

Since evaluating a search node in heuristic planning 

is so time consuming, (De la Rosa, García-Olaya & 

Borrajo, 2007) proposed using Case-based Reasoning 

(CBR) to reduce the number of explored nodes.  Their 

approach stores sequences of abstracted state transi-

tions related to each particular object in a problem 

instance.  Then, with a new problem, these sequences 

are retrieved and re-instantiated to support a forward 

heuristic search, deciding the node ordering for com-

puting its heuristic value. 

 In the last years, other approaches have been devel-

oped to minimize the negative effects of the heuristic 

through ML: (Botea, Enzenberger, Müller & Schaef-

fer, 2005) learned off-line macro-actions to reduce the 

number of evaluated nodes by decreasing the depth of 

the search tree. (Coles & Smith, 2007) learned on-line 

macro-actions to escape from plateaus in the search tree 

without any exploration. (Yoon, Fern & Givan, 2006) 

proposed using an inductive approach to correct the 

domain-independent heuristic in those domains based 

on learning a supplement to the heuristic from observa-

tions of solved problems in these domains.   

All these methods for learning search-control knowl-

edge suffer from the utility problem.  Learning too much 

control knowledge can actually be counterproductive 

because the difficulty of storing and managing the 

information and the difficulty of determining which 

information to use when solving a particular problem 

can interfere with efficiency.

Learning Domain-Specific Planners

An alternative approach to learning search control con-

sists of learning domain-specific planning programs. 

These programs receive as input a planning problem 

of a fixed domain and return a plan that solves the 

problem.



1026  

Learning-Based Planning

The first approaches to learn domain-specific plan-

ners were based on supervised inductive learning; they 

used genetic programming (Spector, 1994) and deci-

sion-list learning (Khardon, 1999), but they were not 

able to reliably produce good results. Recently, (Winner 

& Veloso, 2003) presented a different approach based 

on generalizing an example plan into a domain-specific 

planning program and merging the resulting source 

code with the previous ones. 

Domain-specific planners are also represented as 

policies, i.e., pairs of state and the preferred action 

to be executed in the state. Relational Reinforcement 

Learning (RRL) (Dzeroski, Raedt & Blockeel, 1998) 

has aroused interest as an efficient approach for learning 

policies for relational domains. RRL includes a set of 

learning techniques for computing the optimal policy 

for reaching the given goals by exploring the state 

space though trial and error. The major benefit of these 

techniques is that they can be used to solve problems 

whether the action model is known or not. In the other 

hand, since RRL does not explicitly include the task 

goals in the policies, new policies have to be learned 

every time a new goal has to be achieved, even if the 

dynamics of the environment has not changed. 

In general, domain-specific planners have to deal 

with the problem of generalization.  These techniques 

build planning programs from a given set of solved 

problems so cannot theoretically guarantee solving 

subsequent problems.

Learning Domain Models

No matter how efficient a planner is, if it is fed with a 

defective domain model, it will return defective plans. 

Designing, encoding and maintaining a domain model 

is very laborious. At the time being, planners are the 

only tool available to assist in the development of an AP 

domain model, but planners are not designed specifi-

cally for this purpose. Domain model learning studies 

ML mechanisms to automatically acquire the planning 

action schemas (the action preconditions and post-con-

ditions) from observations of action executions.

Learning domain models in deterministic environ-

ments is a well-studied problem; diverse inductive 

learning techniques have been successfully applied 

to automatically define the actions schema from ob-

servations (Shen & Simon, 1989), (Benson, 1997), 

(Yang, Wu & Jiang, 2005), (Shahaf & Amir, 2006). In 

stochastic environments, this problem becomes more 

complex. Actions may result in innumerable different 

outcomes, so more elaborated approaches are required. 

(Pasula, Zettlemoyer & Kaelbling, 2004) presented 

the first specific algorithm to learn simple stochastic 

actions without conditional effects. This algorithm is 

based on three levels of learning: the first one consists 

of deterministic rule-learning techniques to induce 

the action preconditions. The second one relies on a 

search for the set of action outcomes that best fits the 

execution examples, and; the third one consists of 

estimating the probability distributions over the set of 

action outcomes. But, stochastic planning algorithms do 

not need to consider all the possible actions outcomes.  

(Jimenez & Cussens 2006) proposed to learn complex 

action-effect models (including conditions) for only 

the relevant action outcomes. Thus, planners generate 

robust plans by covering only the most likely execution 

outcome while leaving others to be completed when 

more information is available.  

In deterministic environments, (Shahaf & Amir, 

2006) introduced an algorithm that exactly learns 

STRIPS action schemas even if the domain is only 

partially observable. But, in stochastic environments, 

there is still no general efficient approach to learn ac-

tion model.

FUTURE TRENDS

Since the appearance of the first PDDL version in IPC-

1998, the standard planning representation language has 

evolved to bring together AP algorithms and real-world 

planning problems. Nowadays, the PDDL 3.0 version 

for the IPC-2006 includes numeric state variables to 

support quality metrics, durative actions that allow ex-

plicit time representation, derived predicates to enrich 

the descriptions of the system states, and soft goals 

and trajectory constraints to express user preferences 

about the different possible plans without discarding 

valid plans. But, most of these new features are not 

handled by the state-of-the-art planning algorithms: 

The existing planners usually fail solving problems that 

define quality metrics.  The issue of goal and trajectory 

preferences has only been initially addressed.  Time 

and resources add such extra complexity to the search 

process that a real-world problem becomes extremely 

difficult to solve.  New challenges for the AP community 

are those related to developing new planning algorithms 

and heuristics to deal with these kinds of problems. As 



  1027

Learning-Based Planning

L
it is very difficult to find an efficient general solution, 

ML must play an important role in addressing these 

new challenges because it can be used to alleviate the 

complexity of the search process by exploiting regular-

ity in the space of common problems. 

Besides, the state-of-the-art planning algorithms 

need a detailed domain description to efficiently solve 

the AP task, but new applications like controlling un-

derwater autonomous vehicles, Mars rovers, etc. imply 

planning in environments where the dynamics model 

may be not easily accessible. There is a current need for 

planning systems to be able to acquire information of 

their execution environment.  Future planning systems 

have to include frameworks that allow the integration 

of the planning and execution processes together with 

domain modeling techniques.

Traditionally, learning-based planners are evaluated 

only against the same planner but without learning, in 

order to prove their performance improvement.  Addi-

tionally, these systems are not exhaustively evaluated; 

typically the evaluation only focuses on a very small 

number of domains, so these planners are usually quite 

fragile when encountering new domains.  Therefore, 

the community needs a formal methodology to validate 

the performance of the new learning-based planning 

systems, including mechanisms to compare different 

learning-based planners.

Although ML techniques improve planning systems, 

existing research cannot theoretically demonstrate 

that they will be useful in new benchmark domains.  

Moreover, for time being, it is not possible to formally 

explain the underlying meaning of the learned knowl-

edge (i.e., does the acquired knowledge subsumes task 

decomposition? a goal ordering? a solution path?).  

This point reveals that future research in AP and ML 

will also focus on theoretical aspects that address these 

issues.

CONCLUSION

Generic domain-independent planners are still not able 

to address the complexity of real planning problems. 

Thus, most planning systems implemented in applica-

tions require additional knowledge to solve the real 

planning tasks. However, the extraction and compilation 

of this specific knowledge by hand is complicated. 

This article has described the main last advances 

in developing planners successfully assisted by ML 

techniques.  Automatic learned knowledge is useful 

for AP in diverse ways:  it helps planners in guiding 

search processes, in completing domain theories or in 

specifying particular solutions to a particular problem.  

However, the learning-based planning community can 

not only focus on developing new learning techniques 

but also on defining formal mechanisms to validate its 

performance against other generic planners and against 

other learning-based planners. 

REFERENCES

Benson, S. (1997). Learning Action Models for Re-

active Autonomous Agents. PhD thesis, Stanford 

University.

Blum, A., & Furst, M. (1995). Fast planning through 

planning graph analysis. In C. S. Mellish, editor, Pro-

ceedings of the 14th International Joint Conference 

on Artificial Intelligence, IJCAI-95, volume 2, pages 

1636–1642, Montreal, Canada, August 1995. Morgan 

Kaufmann.

Bonet, B. & Geffner, H. (2001). Planning as Heuristic 

Search. Artificial Intelligence, 129 (1-2), 5-33.  

Borrajo, D., & Veloso, M. (1997). Lazy Incremental 

Learning of Control Knowledge for Efficiently Obtain-

ing Quality Plans.  AI Review Journal. Special Issue 

on Lazy Learning. 11 (1-5), 371-405.

Botea, A.,  Enzenberger, M., Müller, M. & Schaeffer, 

J. (2005).  Macro-FF: Improving AI Planning with 

Automatically Learned Macro-Operators.  Journal of 

Artificial Intelligence Research (JAIR), 24, 581-621.

Bylander, T., The computational complexity of proposi-

tional STRIPS planning. (1994). Artificial Intelligence, 

69(1-2), 165–204.

Coles, A., & Smith, A. (2007). Marvin: A heuristic 

search planner with online macro-action learning. Jour-

nal of Artificial Intelligence Research, 28, 119–156.

De la Rosa, T., García Olaya, A., & Borrajo, D. (2007) 

Using Utility Cases for Heuristic Planning Improve-

ment.  Procceedings of the 7th International Conference 

on Case-Based Reasoning, Belfast, Northern Ireland, 

Springer-Verlag.

Dzeroski, S., Raedt, L. D., & Blockeel, H., (1998) 

Relational reinforcement learning. In International 



1028  

Learning-Based Planning

Workshop on Inductive Logic Programming, pages 

11–22.

Fikes, R., Hart, P., & Nilsson, N., (1972) Learning and 

Executing Generalized Robot Plans, Artificial Intel-

ligence, 3, pages 251-288.

Fox, M. & Long, D, (2003) PDDL2.1: An extension to 

PDDL for expressing temporal planning domains. Jour-

nal of Artificial Intelligence Research, 20, 61–124.

Hoffmann J. & Nebel B. (2001) The FF planning system: 

Fast plan generation through heuristic search. Journal 

of Artificial Intelligence Research,14, 253–302.

Jiménez, S. & Cussens, J. (2006). Combining ILP and 

Parameter Estimation to Plan Robustly in Probabilistic 

Domains. In Conference on Inductive Logic Program-

ming. Santiago de Compostela, ILP2006. Spain. 

Khardon, R. (1999) Learning action strategies for plan-

ning domains. Artificial Intelligence, 113, 125–148,

Pasula, H. Zettlemoyer, L. & Kaelbling, L. (2004) 

Learning probabilistic relational planning rules. Pro-

ceedings of the Fourteenth International Conference 

on Automated Planning and Scheduling, ICAPS04.

Samuel, A. L., (1959). Some studies in machine learning 

using the game of checkers. IBM Journal of Research 

and Development, 3(3), 211–229.

Shahaf, D & Amir, E. (2006). Learning partially observ-

able action schemas. In Proceedings of the 21st National 

Conference on Artificial Intelligence (AAAI’06).

Shen, W. & Simon. (1989). Rule creation and rule learn-

ing through environmental exploration. In Proceedings 

of the IJCAI-89, pages 675–680.

Spector, L. (1994) Genetic programming and AI planning 

systems. In Proceedings of Twelfth National Conference 

on Artificial Intelligence, Seattle,Washington,USA,  

AAAI Press/MIT Press.

Veloso, M. (1994). Planning and learning by analogi-

cal reasoning. Springer Verlag.

Winner, E. & Veloso, M. (2003) Distill: Towards learn-

ing domain-specific planners by example. In Proceed-

ings of Twentieth International Conference on Machine 

Learning (ICML 03), Washington, DC, USA.

Yang, Q, Wu, K & Jiang, Y. (2005) Learning action 

models from plan examples with incomplete knowledge. 

In Proceedings of the 2005 International Conference 

on Automated Planning and Scheduling, (ICAPS 2005) 

Monterey, CA USA, pages 241–250.

Yoon, S., Fern, A., & Givan, R., (2006). Learning 

heuristic functions from relaxed plans. In International 

Conference on Automated Planning and Scheduling 

(ICAPS-2006).

KEY TERMS

Control Rule:  IF-THEN rule to guide the planning 

search-tree exploration.

Derived Predicate: Predicate used to enrich the 

description of the states that is not affected by any of 

the domain actions. Instead, the predicate truth values 

are derived by a set of rules of the form if formula(x) 

then predicate(x).

Domain Independent Planner: Planning system 

that addresses problems without specific knowledge of 

the domain, as opposed to domain-dependent planners, 

which use domain-specific knowledge.

Macro-Action: Planning action resulting from 

combining the actions that are frequently used together 

in a given domain. Used as control knowledge to speed 

up plan generation. 

Online Learning: Knowledge acquisition during 

a problem-solving process with the aim of improving 

the rest of the process.

Plateau: Portion of a planning search tree where 

the heuristic value of nodes is constant or does not 

improve.

Policy: Mapping between the world states and the 

preferred action to be executed in order to achieve a 

given set of goals.

Search Control Knowledge: Additional knowledge 

introduced to the planner with the aim of simplifying 

the search process, mainly by pruning unexplored 

portions of the search space or by ordering the nodes 

for exploration.


