
Inducing non-deterministic actions behaviour to plan robustly
in probabilistic domains

Sergio Jiménez, Fernando Fernández and Daniel Borrajo
Departamento de Informática

Universidad Carlos III de Madrid
Avda. de la Universidad, 30. Leganés (Madrid). Spain

sjimenez@inf.uc3m.es, ffernand@inf.uc3m.es, dborrajo@ia.uc3m.es

Abstract
In the probabilistic track of the last International Plan-
ning Competition two main approaches were used,
Markov Decision Processes (Boutilier, Dean, & Hanks
1998) and decision-theoretic planning (Blythe 1999).
Both approaches use a domain representation with an
explicit definition of the probabilities of the actions ef-
fects. But when planning in realistic domains, most of
the times, the non deterministic effects and the prob-
abilities associated to them are unknown or hard to be
obtained accurately. In this paper we present the LUCK
architecture (Learning Uncertainty information as Con-
trol Knowledge). This architecture plans to solve prob-
lems in probabilistic domains using an initial determin-
istic domain representation. Then, it learns information
about the success and the failure of the actions applying
Inductive Logic Programming Techniques. And, finally,
it uses this information to generate better plans (in terms
of robustness) in the future.

Introduction
In this paper we present the LUCK architecture. This archi-
tecture solves problems in probabilistic domains planning
from a deterministic representation of the domain and learn-
ing knowledge about the reasons that cause the execution of
actions to be a success or a failure. This knowledge is trans-
lated into Control Knowledge so that the planner can reason
about the uncertainty of the plans. The main two contribu-
tions of this paper are:
• Our system does not reason explicitly about a probabilis-

tic description of the domain in the searching process.
The knowledge related to the uncertainty of the world is
modelled through Control Knowledge, which is separated
from the domain model. So, in the search tree, there is no
probabilistic knowledge.

• The probabilistic information of the domain is represented
as Control Knowledge. This Control Knowledge is gen-
erated automatically from the experience using Induc-
tive Learning Programming Techniques. Specifically we
use the ALEPH system that induces theories that explain
when an action will succeed or fail according to the cur-
rent state.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In the last International Planning Competition (IPC41)
practically all the planners that took part in the probabilis-
tic track were solving MDPS based on planners. Among
these planners there were only one using machine learning
techniques to deal with probabilistic domains. This planner
implements the ideas explained in (Fern, Yoon, & Givan
2004) to find policies specifying what action to take given
a goal and a current state. And in the whole competition
only the Probapop system, a conformant probabilistic plan-
ner (Onder, Whelan, & Li 2004), generates plans instead of
policies given a probabilistic planning problem.

Another different approach to plan in non determinis-
tic domain is planning based on a model checking ap-
proach (Kabanza, Barbeau, & St.-Denis 1997). This kind of
systems is able to deal with complex goals as they use tem-
poral model logic to describe them and don’t need to know
the probabilities of the effects of the actions. But they need a
non-deterministic description of the domain, and again they
try to find policies specifying what action to take given a
goal and a current state.

These kinds of policies cannot easily be communicated
to humans and typically is a difficult task to transfer this
knowledge to other similar problems. In our approach, we
don’t learn policies but explanations of the causes that lie
behind the success or failure of the actions. So the domain
designer can get feedback information about the world dy-
namics from the execution of plans.

This fact also motivates the work (Cocora et al. 2006).
In this paper is described how to generate Relational Markov
Decision Processes (RMDPS) (Kersting, Otterlo, & Raedt
2004) and how to learn policies for these RMDPS using re-
lational decision trees which are relational declarative rep-
resentations of the policies. But this work is not precisely
comparable with ours as it starts from a set of example plans,
whereas our system starts from a deterministic domain de-
scription of the world.

There is previous work by Karen Haigh (Haigh & Veloso
1998) very related to ours, in which Control Knowledge is
learned from the experience of executing actions to improve
the planning process. In her work, the attributes that af-
fect the execution of actions are known “a priori”. In our
work, we do not know “a priori” which attributes from the

1http://ipc.icaps-conference.org/



state are relevant with respect to the execution of actions.
Reinforcement Learning approaches (Kaelbling, Littman, &
More 1996) can also be considered as related work as they
also repeat cycles of planning, acting and learning. How-
ever, since our approach is based on deliberative planning, it
is able to reason with a richer representation of the domain.
Thus, we can solve more flexibly problems with different
goals and infinite number of potential states.

Instead of learning policies to achieve particular goals,
Kaelbling et al. proposed to learn plan operators. In (Pasula,
Zettlemoyer, & Kaelbling 2004) and in (Zettlemoyer, Pa-
sula, & Kaelbling 2005), they described how to learn com-
pletely the actions model from examples. Our approach is
different, since we initially have a deterministic representa-
tion of the domain and we only want to learn when the exe-
cution of an action is going to succeed or fail. From a plan-
ning point of view we believe that designing and maintain-
ing a deterministic domain is a simpler task for the users. So,
separation of domain knowledge from probabilistic knowl-
edge can benefit in the process of generating applications,
since declarative Control Knowledge can also be accessed.

The rest of the paper is organized as follows: first, we
present the general architecture of the system and the plan-
ning, execution and learning processes. Next, we describe
the experiments carried out to evaluate the architecture, and
finally we discuss some conclusions.

The planning, acting and learning cycle
LUCK is an architecture that integrates planning, execution
and learning. Figure 1 shows a high level view of its ar-
chitecture. When LUCK faces a planning problem, it first
proposes a plan to solve it, and then tries to execute the plan
actions one by one. While LUCK executes actions it ob-
serves the results of these executions. When the execution
of an action is a failure, LUCK plans to obtain a new plan
that solves the problem from this current state. LUCK con-
siders the execution of an action a failure when the new state
resulting from the execution of this action is different from
the state expected, according to its deterministic representa-
tion of the domain.

Initially, LUCK proposes plans to solve the first problem
only taking into account the deterministic description of the
domain. And, as it starts to observe the results of executing
the actions in the real world, it will generate Control Knowl-
edge that will guide it towards solutions that consider the
uncertainty in the domain.

Planning
For the planning task we have used the non-linear back-
ward chaining planner IPSS (Rodrguez-Moreno et al. 2004),
based on PRODIGY4.0 (Veloso et al. 1995). The inputs to
the planner are the usual ones in planning (domain theory
and problem definition), plus declarative Control Knowl-
edge, described as a set of Control Rules. The output of the
planner, as we have used it in this paper, is a totally-ordered
plan. The Control Rules act as domain dependent heuristics.
They are one of the main reasons why we have used this
planner, given that they provide a declarative representation
of Control Knowledge.

The IPSS planning-reasoning cycle involves as ’decision
points’: choose a goal from the set of pending goals and
subgoals; choose an operator to achieve the selected goal;
choose the bindings to instantiate the chosen operator; and
apply an instantiated operator whose preconditions are sat-
isfied or continue subgoaling on another unsolved goal. The
default decisions at all these decision points can be directed
by Control Rules in order to guide the planner. In our ap-
proach, initially, the planner is executed without any Control
Rules.

Figure 2: Example of a IPSS planner search tree.

Figure 2 shows a search tree where all the bindings de-
cisions has been directed to prefer the Robot1. This tree
belongs to the search process of the planner IPSS solving a
problem consisting on reaching the goals on(B, A) and
on(A,table) from a initial state described by the predi-
cates on(A, B) and on(B,table).

Actions execution
We simulate the execution of the actions in the non deter-
ministic world. We use the simulator provided by the proba-
bilistic track of the last International Planning Competition,
IPC42, to evaluate probabilistic planners.

Figure 3: High level view of the simulator module.

2http://ipc.icaps-conference.org/



Figure 1: High level view of the LUCK planning-execution-learning architecture.

This simulator uses PPDDL1.0 (Younes & Littman 2004)
to describe the world we want to simulate. This language
allows us to describe actions with probabilistic and condi-
tional effects. The simulator maintains a representation of
the current state and updates it when an action is executed.
Figure 3 shows the inputs and outputs of the simulator.

Learning from execution episodes
LUCK uses ILP (Inductive Learning Programming) tech-
niques to analyze the data it obtains from executing actions.
The examples used by the inductive learning techniques
are tuples of the form: (action, result, state),
where action is the name of the executed action; result
is the result of the action execution, that is success or
failure, considering an action execution to be a failure
when the new state caused by this action is different from
the expected one according to the deterministic representa-
tion of the domain; and state is the current state when the
action was executed. Figure 4 shows an execution step in a
probabilistic blocksworld.

Figure 4: LUCK considers the execution of the action
pick-up-block-from(Robot1, B, A) a failure.

For every different action of the domain, LUCK main-
tains the examples of success and failures of execution.

From these examples, LUCK induces two different kinds
of theories: theories about why the actions succeed and the-
ories about why the actions fail.

To induce these theories, we use ALEPH 3 (A Learning
Engine for Proposing Hypotheses). The ALEPH system is
based on the Stephen Muggleton’s ideas of inverse entail-
ment (Muggleton 1995). This system proposes hypothesis,
PROLOG programs, that cover a set of examples described
using first order predicates. It can deal with noisy data (Dze-
roski & Bratko 1992). And, it also can take as input PROLOG
programs describing background knowledge that assists the
induction process.

ALEPH receives three inputs:
• The Background Knowledge, which contains PROLOG

clauses that encode information relevant to the domain.
In our case, which are the types of the planning domain
(blocks, robots, ...), which are the predicates that describe
the examples (on, clear, ...), and which is the target con-
cept to be learned (success-put-down-block-on, failure-
put-down-block-on, ...).
It also contains PROLOG clauses that encode the informa-
tion obtained from the executions of actions, which are
the learning examples. Figure 5 shows a learning exam-
ple associated to the action pick-up-block-from for
the state1 represented in Figure 4.

• The positive examples, that is a set of ground facts rep-
resenting the positive learning examples of the concept to
be learned.

• The negative examples which is a set of ground facts rep-
resenting the negative learning examples of the concept to
be learned.
The ground facts from the positive and negative examples

have all the same appearance. They are PROLOG facts of the
form

3http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph



type-of-object(robot1,robot).
type-of-object(blockA,block).
type-of-object(blockB,block).
true-in-state-dirty(example1,robot1)
true-in-state-on-top-of(example1,blockB,blockA).
true-in-state-on-top-of(example1,blockA,table).

Figure 5: A learning example for the operator
pick-up-block-from.

target-concept (example-id, parameters).

Where target-concept is the concept to be learned,
example-id is a number to link the positive example to
the associated leaning example, and parameters are the
arguments of the operator. So, a ground fact from the posi-
tive or negative examples could be:

success-pick-up-block-from(example14,robot2,block4,table)

The output of ALEPH is a theory, a set of PROLOG
clauses, that tries to cover as many positive learning exam-
ples as possible, covering the less number possible of nega-
tive examples . In LUCK this output represents a set of rules
that will try to explain when an action succeeds and when it
fails.

[Rule 1]
[Pos cover = 5 Neg cover = 27]
failure-pick-up-block-from(A,B,C,D) :-

true-in-state-dirty(A,B).

Figure 6: Rule induced by AELPH to learn the concept of
failure for the operator pick-up-block-from

These induced rules are composed of:

1. The number of positive and negative examples that the
rules covers. That gives us an estimation of the rule cred-
ibility.

2. The head of the rule, that is target concept.

3. The body of the rule, predicates that describe when the
target concept is true.

As an example, Figure 6 shows a rule that is part
of a theory induced by ALEPH associated to the ac-
tion pick-up-block-from to learn the concept of
failure.

This rule means that when LUCK tries to pick-up a
block using a dirty robot-arm from the table it is
going to fail in about 15% of the times.

15% ' Positives/(Positives + Negatives)

For each operator in the domain two sets of rules like the
one in Figure 6 are generated: one set to explain the concept
of success and other set to explain the concept of failure.
Finally, LUCK is ready to use this information induced from
the experience to tell the planner how to generate plans that
consider the uncertainty.

Using the learned experience
LUCK uses the induced theories described in the previous
section to automatically generate Control Rules that guide
the planner in the decision points of the search tree. The
if-part of the Control Rules is composed of the set of condi-
tions that have to be satisfied in a given node of the search
tree in order to fire that Control Rule. These conditions refer
to aspects of the planner search process, such as what the
current state is, in what goal the planner is working on, or
what operator can achieve the current goal. The then-part of
the rules describes what decision the planner should make in
a ’decision point’.

(control-rule prefer-bindings-pick-up-block-from
(IF
(and
(current-operator pick-up-block-from)
(generate-best-binding-pick-up-block-from <best-binding>)))

(THEN prefer bindings <best-binding>))

Figure 7: Example of control rule.

For the time being LUCK only generates Control Rules
to guide the planner in decision points for choosing bind-
ings. It generates automatically a Control Rule for every
operator in the domain to choose the best bindings for that
operator. Figure 7 shows an example of one of these Control
Rules automatically generated by LUCK for the operator
pick-up-block-from.

All these Control Rules have the same structure. They
have two metapredicates:

• (current-operator op). To fire the rule only when
the current operator in the search tree is op.

• (generate-best-binding-op <best-binding>).
This metapredicate acts as a generator and it sets
the variable <best-binding> to the best bind-
ings for the current operator. The COMMONLISP
code of this metapredicete is automatically gener-
ated taking into account the theories induced by
ALEPHḞigure 8 shows the pseudocode of the metapred-
icate generate-best-binding for the operator
pick-up-block-from.

generate-best-binding-pick-up-block-from (best-binding)
best-binding: The best bindings for the operator
B← generate-possible-bindings(pick-up-block-from);
P← Initialize-bindings-probabilities();
RS← get-success-rules(pick-up-block-from);
RF← get-failure-rules(pick-up-block-from);
For each possible binding bi in B

When bi matches a success rule rsj ,
increase probability of choosing bi with reliability of rsj

When bi matches a failure rule rfj ,
decrease probability of choosing bi with reliability of rfj

best-binding← choose-best-binding(B,P);
Return best-binding;

Figure 8: generate-best-binding pseudocode



First, the metapredicate generates all the possible bind-
ings for the operator. Second, it associates a probability
value to every possible binding. This probability is initially
zero for all possible bindings. Then, it selects a binding, and
tests if a success rule can be fired with it. If so, it increases
the probability of choosing it considering the reliability of
the rule. We are currently studying different ways of updat-
ing it. The initial method we are considering is just adding
previous probability with the rules reliability. However, we
will explore using no-regret techniques in order to update it.
Then, it tests if a failure rule can be fired with this binding.
If so, it decreases the probability of choosing the binding.
This is done for all the possible bindings. And, finally, the
function returns the best binding according to these proba-
bilities.

Currently this function returns always the binding with
the greater probability value. We are planning to use roulette
mechanisms in the near future for selecting the best bind-
ing. But at this point we can consider using different ex-
ploration/exploitation strategies or even algorithms that also
take into account the risk of executing actions.

Experimental Results
We have carried out experiments to evaluate the behaviour of
the architecture using a modified version of the blocksworld
domain from the probabilistic track of the IPC4. We have
introduced three modifications:
• There are two robot arms (instead of one) to

handle the blocks. Therefore, the operators
pick-up-block-from and put-down-bock-on
have another extra argument indicating the robot that
carries out the action.

• There is a new predicate, indicating when a robot arm is
dirty.

• When a robot is dirty, actions are going to fail 25% of the
times. Obviously, the planner does not know it. It will
have to learn it by executing actions.

The learned theories
In this version of the blocksworld domain LUCK has tried
to solve ten 5-blocks problems generated with the random
problem generator provided by the probabilistic track of the
IPC4. Then, it has generated theories about the success
and failure of actions. Figure 9 shows the learned theories
by LUCK for the operators pick-up-block-from and
put-down-block-on.
• Rule 1 means to LUCK that attempts to pick-up a

block C from another block D succeeds 92% of the times.
• Rule 2 means to LUCK that attempts to pick-up a

block C from another block D with a dirty robot B fails
15% of the times.

• Rule 3 means to LUCK that attempts to put-down a
block C that is holded by the robot B on another block D
succeeds 87% of the times.

• Rule 4 means to LUCK that attempts to put-down a
block C on another block D with a dirty robot B fails 25%
of the times.

Induced Rules for pick-up-block-from

Success Rules
[Rule 1]
[Pos cover = 58 Neg cover = 5]
success-pick-up-block-from(A,B,C,D) :-

true-in-state-on-top-of(A,C,D).
Failure Rules
[Rule 2]
[Pos cover = 5 Neg cover = 27]
failure-pick-up-block-from(A,B,C,D) :-

true-in-state-dirty(A,B).

Induced Rules for put-down-block-on
Success Rules
[Rule 3]
[Pos cover = 42 Neg cover = 6]
success-put-down-block-on(A,B,C,D) :-

true-in-state-holding(A,B,C).
Failure Rules
[Rule 4]
[Pos cover = 6 Neg cover = 18]
failure-put-down-block-on(A,B,C,D) :-

true-in-state-dirty(A,B).

Figure 9: Learned theories for the operators
pick-up-block-from and put-down-block-on.

For every operator two theories are automatically gener-
ated. A first one describing why an action succeeds and a
second one describing when an action fails. In this example
all the induced theories have just one rule.

As is done in our current work the estimation of the prob-
ability of the rules is not perfect, we explain how we plan to
improve this estimation in the conclusions section. For ex-
ample the induced probability for Rule 2 should be 25%
instead of 15%. When the amount of problems solved by
LUCK is bigger, these values will be more accurate. For
Rule 1 and Rule 3 these values depend on the number
of times that these actions are tried with a dirty robot.

The point is that the estimation is not perfect but has in-
formation about why the execution of an action fails or suc-
ceeds. What allows LUCK to generate Control Knowledge
to guide the planning module.

Measuring the quality improvement
To evaluate the worth of the learned theories we have solved
a set of twenty-five 8-blocks problems generated with the
random problem generator provided by the probabilistic
track of the IPC4. We have made LUCK to solve this
twenty-five problem set with and without the acquired Con-
trol Knowledge described in the previous section. And we
have measure two different magnitudes:

1. The length of the plan executed to solve a problem.

2. The number of failed actions. That is the number of re-
planning process.



As the success or failure of the actions is non determinis-
tic, to obtain reliable values we have solved 15 times every
problem and we have extracted the average values. Table 1
shows the obtained experimental results.

In all the problems, except in problem 12 and in problem
19, the number of failed actions is less or equal planning
with the induced Control Knowledge than planning without
it. In problem 12 and in problem 19 these values are practi-
cally the same (they differ just a little because we are testing
in a probabilistic domain). So we can state that planning us-
ing the induced Control Knowledge makes LUCK finding
more robust plans.

As the plans found using the Control Knowledge are more
robust, less replanning process has been needed so the length
of the executed plans is also shorter or equal than planning
without the induced Control Knowledge.

And also, as the induced Control Knowledge acts as
heuristics to the LUCK planning module, it makes LUCK
to find solution in problems that couldn’t be solved before
within a time bound of 30 seconds (problem2, problem8,
problem15, problem17, problem24).

Planning Time
To evaluate how the use of the Control Knowledge affects to
the planning process we have measured the time that takes
the planner to solve the twenty-five problem set. We have
solved 15 times every problem and we have extract the aver-
age values. Table 2 shows the obtained experimental results.

Problem Time Time using CK
Problem1 0.37 0.68
Problem2 Unsolved 0.7
Problem3 0.28 0.61
Problem4 0.77 0.39
Problem5 0.21 0.42
Problem6 2.31 0.53
Problem7 0.73 0.38
Problem8 Unsolved 3.66
Problem9 0.42 1.72
Problem10 2.59 1.5
Problem11 0.36 1.59
Problem12 0.16 0.52
Problem13 0.4 0.46
Problem14 0.36 1.15
Problem15 Unsolved 2.96
Problem16 0.79 2.37
Problem17 Unsolved 1.8
Problem18 0.25 0.95
Problem19 0.78 1.33
Problem20 0.47 0.88
Problem21 0.36 2.1
Problem22 0.81 1.57
Problem23 0.2 1.7
Problem24 Unsolved 2.04
Problem25 1.61 2.705

Table 2: Experimental planning times for a set of twenty-
five
8-blocks problems.

On one hand when planning with the Control Knowledge
solutions are more robust, less actions fail and less replan-
ning processes are needed so it takes less time to solve a
problem. But on the other hand when the number of failures
is practically the same planning with and without the Control
Knowledge, the time that takes LUCK to solve a problem is
a little bit bigger using Control Knowledge. Because plan-
ning using Control Knowledge implies making some extra
computations in the planner search process that cost time.

Conclusions
In this paper, we present the LUCK architecture for acting
in domains with uncertainty. The LUCK system acquires
automatically information about the behaviour of the actions
and acts according to plans that are obtained using this in-
formation.

Initially LUCK only needs a deterministic description of
the action model since it handles the uncertainty learning
declarative control rules that modify its default determinis-
tic behaviour. We have designed this approach basically for
three main reasons:

1. Defining a probabilistic domain for realistic problems is
not an easy task. Usually the non deterministic effects of
the actions and the probabilities associated to them are un-
known or difficult to predict. Our approach automatically
learns information that deals with this kind of uncertanity.

2. Leaning completely a domain theory without any kind of
bias for a realistic problem is also a hard task (Pasula,
Zettlemoyer, & Kaelbling 2004).

3. The induced declarative Control Rules give information
understandable for a human about the causes that lie be-
hind the success or failure of the actions

Experimental results reflects that LUCK is able to learn
the reasons that causes the success and failure of the ac-
tions of a simple probabilistic domain. This information is
kept separated from the action theory, represented as Con-
trol Knowledge and it is used to generate Control Rules that
guide successfully the planning process towards solutions of
a better quality.

In this paper the quality of the plans has been interpreted
as the robustness of its actions. And the final goal lie in
finding solutions to problems using the most robust actions
in the minimum amount of steps. As it is done in the IPC4.
So the learning process has been focused on the concepts
of the failure or success of actions execution. An interest-
ing extension for future efforts is working in domains where
some other attribute of the actions has to be learned. For ex-
ample, the time that takes an action to finish its execution or
the cost of executing an action in a given domain.

Our current work lie in using symbolic statistical tech-
niques to estimate the probabilities of the induced rules
in an accurately way. Precisely we are working with the
programming language for symbolic-statistical modelling
PRISM4. PRISM perform a Maximum Likelihood estima-
tion of the program parameters from incomplete data by

4http://sato-www.cs.titech.ac.jp/prism/



Problem Failures Failures using CK Plan Length Plan Length using CK
Problem1 1 1 40 40
Problem2 Unsolved 1 Unsolved 38
Problem3 1 1 30 30
Problem4 7.35 1 27.85 16
Problem5 1 1 24 24
Problem6 14.42 1 60.28 30
Problem7 5.71 1 28.75 20
Problem8 Unsolved 1 Unsolved 118
Problem9 1 1 46 46
Problem10 14.5 1 61.57 34
Problem11 1 1 38 38
Problem12 1.35 1.42 12.92 13
Problem13 4.24 1 13 10
Problem14 1 1 36 36
Problem15 Unsolved 1.71 Unsolved 72.71
Problem16 1 1 76 76
Problem17 Unsolved 1 Unsolved 52
Problem18 1 1 20 20
Problem19 1.85 2.07 29.71 29.85
Problem20 4.28 1 16.78 14
Problem21 1 1 40 40
Problem22 6 1 28.92 20
Problem23 1 1 22 22
Problem24 Unsolved 1 Unsolved 32
Problem25 6 2.07 45.5 36.64

Table 1: Experimental plan quality measures for a set of twenty-five 8-blocks problems.

the Expectation-Maximization algorithm (Sato & Kameya
2001).

At the same time we are also working in how we can use
the information learned from the experience not only to help
the LUCK planner module choosing the correct bindings
but also choosing the correct goals. Therefore, improving
the quality of the solutions.

As the IPSS planner is not a fast planner, in the near future
we plan to study how Control Knowledge can be learned to
guide the search process of more efficient planners such as
the heuristic planner FF (Hoffmann 2001) and thus compare
our system to the state-of-the-art planners that take part in
the probabilistic track of the International Planning Compe-
tition.

Acknowledgements
This work has been partially supported by the Spanish MEC
project TIN2005-08945-C06-05 and regional CAM-UC3M
project UC3M-INF-05-016.

References
Blythe, J. 1999. Decision-theoretic planning. AI Magazine,
Summer.
Boutilier, C.; Dean, T.; and Hanks, S. 1998. Planning un-
der uncertainty: structural assumptions and computational
leverage. Journal of Artificial Intelligence Research.

Cocora, A.; Kersting, K.; Plagemann, C.; Burgard, W.; and
Raedt, L. D. 2006. Learning relational navigation policies.
Kunstliche Intelligenz.
Dzeroski, and Bratko, I. 1992. Handling noise in in-
ductive logic programming. Workshop on Inductive Logic
Programming, ICOT-TM-1182, Inst. for New Gen Comput
Technology, Japan.
Fern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-
specific control knowledge from random walks (draft).
Proceedings of the International Conference in Autom-
mated Planning and Scheduling.
Haigh, K. Z., and Veloso, M. M. 1998. Planning, execution
and learning in a robotic agent. AIPS 120–127.
Hoffmann, J. 2001. Ff:the fast forward planning system.
AI Magazine, 22(3) 57–62.
Kabanza, F.; Barbeau, M.; and St.-Denis, R. 1997. Plan-
ning control rules for reactive agents. Artificial Intelligence
95(1):67–11.
Kaelbling, L. P.; Littman, M.; and More, A. 1996. Rein-
forcement learning: A survey. Journal of Artificial Intelli-
gence Research.
Kersting, K.; Otterlo, M. V.; and Raedt, L. D. 2004. Bell-
man goes relational. In In Proceedings of the Twenty-First
International Conference on Machine Learning (ICML-
04).
Muggleton, S. 1995. Inverse entailment and Progol. New



Generation Computing, Special issue on Inductive Logic
Programming 13(3-4):245–286.
Onder, N.; Whelan, G. C.; and Li, L. 2004. Probapop:
Probabilistic partial-order planning. Proceedings of the
International Conference in Autommated Planning and
Scheduling.
Pasula, H.; Zettlemoyer, L.; and Kaelbling, L. 2004. Learn-
ing probabilistic relational planning rules. Proceedings
of the Fourteenth International Conference on Automated
Planning and Scheduling.
Rodrguez-Moreno, M. D.; Borrajo, D.; Cesta, A.; and
Meziat, D. 2004. An ai tool for scheduling satellite nomi-
nal operations. AI Magazine.
Sato, T., and Kameya, Y. 2001. Parameter learning of
logic programs for symbolicstatistical modeling. Journal
of Artificial Intelligence Research 391–454.
Veloso, M.; Carbonell, J.; Prez, A.; Borrajo, D.; Fink, E.;
and Blythe, J. 1995. Integrating planning and learning:
The PRODIGY architecture. Journal of Experimental and
Theoretical AI 7:81–120.
Younes, H. L. S., and Littman, M. L. 2004. Ppddl1.0:
An extension to pddl for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-167,
School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania.
Zettlemoyer, L.; Pasula, H.; and Kaelbling, L. 2005. Learn-
ing planning rules in noisy stochastic worlds. Proceedings
of the Twentieth National Conference on Artificial Intelli-
gence (AAAI-05).


