
Learning actions success patterns from execution

Sergio Jiménez
Departamento de Informática.

Universidad Carlos III de Madrid.
Avda. de la Universidad, 30. Leganés (Madrid). Spain.

sjimenez@inf.uc3m.es

Abstract
Action policies allow to achieve robust plan execu-
tions in stochastic environments. Recent algorithms like
LRTDP or LAO* efficiently find robust action policies
but they require accurate specification of the dynamics
of the environment. When addressing planning tasks
in the real world these specifications are rarely avail-
able. Besides, learning them implies extensive explo-
ration of the environment which can be immensely in-
efficient and even dangerous in some domains. As a re-
sult, off-the-shelf planners complemented with plan re-
pair are frequently used to solve problems in these envi-
ronments. In this paper, we discuss mechanisms to auto-
matically provide off-the-self planners with information
about the actions performance in the environment that
improve the robustness the plans found. Specifically,
this improvement is achieved by capturing patterns of
situations in the environment that affects to the actions
performance from observing plans executions.

Introduction
Recent planning applications like the control of Mars rovers,
underwater vehicles or spacecrafts need to address planning
tasks in stochastic environments. Two different approaches
are mainly followed to solve these kind of planning prob-
lems:
• When the dynamics of the environment are known one

can specify them as a Markov Decision Process (MDP).
Algorithms like LRTDP (Bonet & Geffner 2003) or
LAO* (Hansen & Zilberstein 2001) efficiently find good
action policies by optimising a utility function, which
gives preference to the best transitions of the MDP.

• When the dynamics of the environment are not available
one can try to learn them. But learning from scratch the
dynamics of a real environments is very complex. As
it shown in (Pasula, Zettlemoyer, & Kaelbling 2004),
even in simple toy worlds like the blocksworld, when ac-
tions are non-deterministic they may have innumerable
outcomes thus the learning requires an extensive explo-
ration of the world. So in practice, these problems are fre-
quently addressed by off-the-self planners complemented
with plan repairing (Fox et al. 2006) techniques.

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

This work is concerned with investigating how knowledge
about the actions performance can be learned and used in
off-the-self planners to find more robust plans. Specifically
we study how to capture patterns of situations in the environ-
ment that affects to the actions success and how this infor-
mation can be incorporated in a standard planning domain
description.

Capturing the actions success
The process of learning the actions success consists of three
phases: (1) experience gathering, (2) success patterns in-
duction and (3) success patterns use. Figure 1 shows an
overview of the integration of these three phases.

Figure 1: Process for capturing actions success patterns.

Phase 1: Experience gathering
In this phase the experience is gathered from observing plans
execution. The inputs to this phase are a set of training ex-
amples and the STRIPS domain used by the planner to solve
the training examples. Figure 2 shows the pick-up ac-
tion from the STRIPS slippery-gripper domain. During this
phase plans are generated and executed, and observations
of the executions of actions in the environment are stored.
The plans are generated by the heuristic planner FF (Hoff-
mann & Nebel 2001), but any off-the-shelf planner can be
used. These plans are executed action by action and af-
ter each execution the corresponding observation is stored.
The output of this phase is a set of observations of the form
(sn, ai, sn+1), where:



(:action pick-up

:parameters (?b - block)

:precondition (and (emptyhand)(clear ?b)(on-table ?b))

:effect (and (holding ?b)

(not (emptyhand))

(not (clear ?b))

(not (on-table ?b))))

Figure 2: Action pick-up from the STRIPS slippery-
gripper domain.

• sn is a conjunction of literals representing the facts hold-
ing before the action ai execution;

• ai is the action executed; and

• sn+1 is a conjunction of literals representing the facts that
are observed to be holding after the action ai execution.

When the state sn+1 of an execution observation does not
correspond to the expected outcome of the executed action,
the execution module calls the planner with the new state
of the environment so the planner can replan to solve the
problem in this new scenario. The execution of an action in
an stochastic environment is performed by the simulator of
the probabilistic track of the IPC5. This simulator allows
us to generate environments where actions have stochastic
behaviour using PPDDL1.0. The simulator maintains a rep-
resentation of the current state of the environment that can
be totally observed at any time, and that it is updated only
when a new action is executed.

Phase 2: Success pattern induction
In this phase a relational machine learning mechanism is
used to induce patterns of the success of the actions. The
inputs of these phase are: the STRIPS domain theory and
the gathered observations from previous phase. The output
of the phase is a set of patterns of the success of the actions.

The patterns of the success of the actions are coded as
Stochastic Logic Programs(SLP) (Muggleton 2000). SLP’s
are a generalisation of HMM’s, stochastic context-free
grammars, and direct Bayes nets. A SLP is a logic program
with log-linear distributions associated to the clauses. The
log-linear distribution provides a distribution over the vari-
able bindings that allows SLP’s to represent complex distri-
butions. When the log-linear distributions of all the clauses
of an SLP sharing the same head sums 1, the SLP is called
normalised SLP. In a normalised SLP, the parameters of the
log-linear distribution can be taken directly as probabilities.
Figure 3 shows an example of a normalised SPL.

0.4 : s(X):- p(X),q(X). 0.3 : p(a). 0.2 : q(a).

0.6 : s(X):- q(X). 0.7 : p(b). 0.8 : q(b).

Figure 3: An example of a normalised SLP.

Inductive Logic Programming (ILP) have been success-
fully applied to SLP’s learning (Muggleton 2000). ILP tech-
niques are machine learning methods that induce logic pro-
grams that explain a given concept from examples repre-

sented as logic clauses. The ILP technique used 1 heuristi-
cally searches for the logic programs that explain as many
positive examples of the target concept as possible and
covering as less negative examples as possible. It is ro-
bust to noisy learning examples, allow incremental learning
and support declarative background knowledge to guide the
search. This technique is complemented with parameter es-
timation to obtain the parameters of the log-linear distribu-
tion associated to the induced logic programs.

Figure 4 shows the success patterns induced for the
pick-up action from the slippery-gripper domain combin-
ing ILP and parameter estimation. The head of the clause
represents the target concept (in the example the success of
the action pick-up) and the body of the clause represents
the set of predicates describing the conditions that make the
target concept true. The parameters of the rule represent the
probability of success of the action given that the body of
the rule is true in the current state.

0.8:pick_up(Obs,Gripper,B1,B2):-not_wet(Obs,Gripper).

0.2:pick_up(Obs,Gripper,B1,B2):-wet(Obs,Gripper).

Figure 4: Success patterns induced for the pick-up action
from the slippery-gripper domain.

Phase 3: Using the success patterns for robust
planning
In this phase the success patterns are used to enhance the
STRIPS domain theory. By the time being we have studied
two solutions to improve the robustness of plans: (1) com-
piling the success patterns of an action into its probabilistic
effects and (2) compiling the success patterns of an action
into its cost value.

Solution 1: Compiling the success patterns into proba-
bilistic effects. Each pattern pj of the action ai is con-
verted into a conditional probabilistic effect of the action
ai: The condition of the effect is the body of the pattern
pj and the probability value is the parameter of the pattern
pj . Figure 5 shows how the two success patterns induced
for the action pick-up are compiled into two probabilistic
effects.

Solution 2: Compiling the success patterns into condi-
tional cost. Each pattern pj of the action ai is compiled
into a conditional cost of the action ai: The body of the
pattern is converted into the conditions of the cost and the
parameter is translated into the cost value. Figure 6 shows
the result of compiling the two success patterns induced for
the pick-up action into two conditional costs.

The fragility of action ai is computed as:
fragility(ai) = −log(prob(ai))

This expressions allows to transform the maximization of
the product of the action success probabilities along the plan
into a minimisation of the sum of the fragility costs. Search-
ing for plans minimising this metric heuristically guides the
planner towards robust solutions.

1http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph



(:action pick-up

:parameters (?b - block)

:precondition (and (emptyhand)(clear ?b)(on-table ?b))

:effect (and (when (wet)

(probabilistic

0.8 (and (holding ?b)

(not (emptyhand))

(not (clear ?b))

(not (on-table ?b)))))

(when (not (wet)

(probabilistic

0.2 (and (holding ?b)

(not (emptyhand))

(not (clear ?b))

(not (on-table ?b))))))))

Figure 5: Action pick-up updated with the probabilistic
effects.

(:action pick-up

:parameters (?b - block)

:precondition (and (emptyhand)(clear ?b)(on-table ?b))

:effect

(and (holding ?b)

(not (emptyhand))

(not (clear ?b))

(not (on-table ?b))

(when (wet) (increase plan-fragility 0.2231))

(when (not (wet)) (increase plan-fragility 1.6094))))

Figure 6: Action pick-up updated with the conditional
cost.

Evaluating the use of success patterns
To evaluate the utility of the success patterns we have ad-
dress 10 random problems of increasing difficulty from the
probabilistic slippery-gripper domain. Every problem is
solved 30 times, and we compared the solutions obtained by
four different planning configurations measuring the aver-
age number of actions that each configuration needs to solve
each problem:

• FF-Replan: FF (Hoffmann & Nebel 2001) plans with a
STRIPS domain replanning on failure.

• FF-Replan with success knowledge: Metric-FF (Hoff-
mann 2003) plans with the numeric domain obtained from
compiling the success patterns into fragility costs and re-
planning on failure.

• GPT with success knowledge. GPT (Bonet & Geffner
2004) plans with the probabilistic domain obtained from
compiling the induced success patterns.

• GPT with complete knowledge. GPT (Bonet & Geffner
2004) plans with the exact probabilistic domain model.
This configuration serves as a control to allow compari-
son.

Both configurations FF-Replan with success knowledge and
GPT with success knowledge are the result of compiling the
success patterns induced after solving 5 training problems.
Figure 7 shows that both compilations of the success pat-

terns allow to obtain more robust plans which solve the plan-
ning task using fewer actions.

Figure 7: The obtained experimental results.

To date the learning mechanism have been implemented
and two different ways of using the acquired patterns are
been evaluated. The implementation of incrementally learn-
ing mechanisms to on-line incorporate the new learnt knowl-
edge is still in progress.

References
Bonet, B., and Geffner, H. 2003. Labeled rtdp: Improving
the convergence of real-time dynamic programming.
Bonet, B., and Geffner, H. 2004. mgpt: A probabilistic
planner based on heuristic search. In Proceedings of the
IPC4, ICAPS-04.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. Proceedings of the
16th ICAPS 193–202.
Hansen, E. A., and Zilberstein, S. 2001. LAO * : A heuris-
tic search algorithm that finds solutions with loops. Artifi-
cial Intelligence 129(1-2):35–62.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Hoffmann, J. 2003. The metric-FF planning system: Trans-
lating ignoring delete lists to numerical state variables.
JAIR 20.
Muggleton, S. 2000. Learning stochastic logic programs.
In Proceedings of the AAAI2000 Workshop on Learning
Statistical Models from Relational Data.
Pasula, H.; Zettlemoyer, L.; and Kaelbling, L. 2004. Learn-
ing probabilistic relational planning rules. Proceedings
of the Fourteenth International Conference on Automated
Planning and Scheduling.


