
Combining ILP and Parameter Estimation to
Plan Robustly in Probabilistic Domains

Sergio Jiménez1 and James Cussens2

1 Departamento de Informática
Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain
sjimenez@inf.uc3m.es

2 Department of Computer Science
University of York

Heslington, York YO10 5DD
jc@cs.york.ac.uk

Abstract. When developing planning applications, designing a domain
theory to describe a realistic problem is not an easy task. Since the out-
come of actions is usually not deterministic, it is likely that ‘a priori’ the
preconditions or the effects of actions are unknown or hard to fully spec-
ify. Even if we are able to specify this information, the outcome of actions
could vary over time. In this paper we describe how to combine ILP and
parameter estimation to automatically acquire probabilistic information
for a planning domain thus simplifying the process of generating realistic
planning applications.

1 Introduction

In this paper we describe how to complete a deterministic planning domain de-
scription with probabilistic information about the outcome of actions, where
this information is acquired from experience. We propose to solve probabilis-
tic planning problems using a deterministic planner together with replannning
techniques, so we can reason with a richer representation of the domain than
in Reinforcement Learning. We can flexibly solve a greater number of problems
with different goals and infinite number of potential states, and also handle re-
sources and the costs of actions. Also, we learn knowledge about the dynamics of
the world, which allows us to be flexible enough to deal with domains where the
outcomes of actions are not deterministic. The acquired knowledge is expressed
in a symbolic representation, thus, it can be reused to solve other problems in
the same domain and is understandable by humans.

2 Capturing the world uncertainty

The probabilistic information for the planning domain is captured as rules of two
kinds which explain the successes and failures of actions depending on a given



2

state. Although our approach is flexible enough to learn other concepts, we just
try to induce these two kinds of rules from observing the executions of actions
because we consider they give us enough information to deal with the domains
traditionally used as test benches in probabilistic planning.

2.1 Learning the Rules about the actions performance with ILP

To induce these rules we use the ILP system ALEPH3 based on the Stephen
Muggleton’s ideas of inverse entailment. ALEPH proposes hypothesis, as Pro-
log programs, that cover a set of examples described using first order logic
predicates and is able to deal with noisy learning examples. It receives as inputs:

– Background knowledge, which contains information about the types, the
objects and the predicates of the planning domain. Also here we could in-
troduced extra information about the structure of the planning domain ex-
tracted using domain analysis tools.

– The positive and negative learning examples, which are tuples of the form:
(action, state, result), where action is the fully instantiated executed
action; state is a description of the current state in which the action was
executed and result is the result of the execution: success or failure.

2.2 Estimating rule probabilities with MLE

We use Maximum Likelihood Estimation (MLE). This estimation is implemented
by using a PRISM program that models the classification of the observations
as positive or negative examples for the induced rules.

We assume the following generative model for the observed data: (1) the
unlabelled example is generated with a probability equal to its relative frequency
in the data; (2), a rule is chosen according to an unknown distribution over rules;
(3), the process checks to see if the rule thus chosen covers the example: if not we
have a failure and the process returns to step (2) otherwise it continues and (4)
the example is now classified as positive or negative according to an unknown
probability associated with the chosen rule.

MLE simultaneously estimates both the probabilities of choosing rules and
the classification probabilities. This is a missing data problem, since we do not
know which rule classified each example. PRISM handles MLE in such situations
using the EM (Expectation-Maximisation) algorithm. The missing data includes
an unknown number of failures at step (3) so a particular version of EM: Failure-
Adjusted Maximisation (FAM) is used which PRISM implements using a First
Order Compiler.

3 Planning in Probabilistic domains

We propose three different ways to automatically integrate the new acquired
information with the initial knowledge about the world. Further studies are
needed to decide which is the most convenient one.
3 http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph



3

1. This information can be used to define heuristics that modify the initial
behaviour of a deterministic planner.

2. This information can be use to define a cost model for the planning actions.
3. This information together with the initial deterministic description of the

domain can be compiled into a probabilistic domain description.

4 Experiments

The experiments have been carried out in a modified version of the blocksworld
domain from the probabilistic track of the last International Planning Compe-
tition(IPC4). In this domain, a robot arm can: put-down and pick-up a block.
Besides that, more than one robot arm that can handle the blocks. Therefore, the
operators pick-up and put-down have another extra argument indicating which
robot arm is carrying out the action. Actions tried by a robot which is dirty fail
75% of the times. Initially the planner does not know this; this knowledge has
to be automatically acquired from the execution of actions.

success_pick_up_block_from(A,B,C,D) :-

true_in_state_not_holding(A,B,E).

failure_pick_up_block_from(A,B,C,D) :-

true_in_state_dirty(A,B).

success_put_down_block_on(A,B,C,D) :-

true_in_state_not_dirty(A,B).

success_put_down_block_on(A,B,C,D) :-

true_in_state_holding(A,E,F),

true_in_state_not_dirty(A,E).

success_put_down_block_on(A,B,C,D) :-

true_in_state_holding(A,B,C).

failure_put_down_block_on(A,B,C,D) :-

true_in_state_dirty(A,B).

Fig. 1. The induced Rules after solving 5 blocksworld problems and the variation of
the error as a function of the number of samples used in the estimation

We have solved five 8-blocks problems and analysed the induced rules to
test whether this knowledge has been captured or not. Figure 1 shows the set of
acquired rules: rules 2,3,4 and 6 state that actions are going to fail when the robot
trying the action is dirty. Rule 1 and 5 have just captured preconditions of the
actions that we initially knew from the deterministic description of the domain.
Also, we have measured the mean quadratic error between our estimation and
the real probability values. The graph in Fig 1 shows the evolution of this error
as we increase the number of samples used in the estimation. In this domain the
error value is stabilised when we are using more than 25 learning examples.

4 http://ipc.icaps-conference.org/


