
DEPARTAMENTO DE SISTEMAS INFORMÁTICOS Y COMPUTACIÓN
UNIVERSIDAD POLITÉCNICA DE VALENCIA

P.O. Box: 22012 E-46071 Valencia (SPAIN)

Informe Técnico / Technical Report

Ref. No.: DSIC-II/18/03 Pages: 51
Title: On-Demand Strategy Annotations Revisited
Author(s): M. Alpuente, S. Escobar, B. Gramlich, and S. Lucas
Date: 24/07/03
Keywords: Declarative programming, demandedness, lazy evalua-
tion, OBJ, on-demand strategy annotations

Vo Bo

Leader of research Group Author(s)

On-Demand Strategy Annotations Revisited∗

M. Alpuente† S. Escobar† B. Gramlich‡ S. Lucas†

Abstract

In functional languages such as OBJ*, CafeOBJ, and Maude, symbols
are given strategy annotations that specify (the order in) which subterms
are evaluated. Syntactically, strategy annotations are given either as lists
of natural numbers or as lists of integers associated to function symbols
whose (absolute) values refer to the arguments of the corresponding sym-
bol. A positive index prescribes the evaluation of an argument whereas a
negative index means “evaluate on-demand”. While strategy annotations
containing only natural numbers have been implemented and investigated
to some extent (regarding, e.g., termination and completeness), fully gen-
eral annotations (also called on-demand strategy annotations), which have
been proposed to support laziness in OBJ-like languages, are disappoint-
ingly under-explored to date. In this paper, we first point out a number
of problems of current proposals for handling on-demand strategy anno-
tations, such as undecidability of the reduction relation or inadequacy of
the model. Then, we propose a solution to these problems by keeping an
accurate track of annotations along evaluation sequences. This solution
is defined as a suitable extension of the E-evaluation strategy of OBJ-like
languages (which only considers annotations given as natural numbers) to
on-demand strategy annotations. Our strategy overcomes the drawbacks
of these previous proposals and also exhibits better computational prop-
erties. For instance, we show how to use it for computing (head-)normal
forms. We also introduce a transformation for proving termination of the
new evaluation strategy by using standard techniques. Finally, we present
an interpreter of the new strategy together with some encouraging exper-
iments.

Keywords: Declarative programming, demandedness, lazy evaluation,
OBJ, on-demand strategy annotations

1 Introduction

Eager rewriting-based programming languages such as Lisp, OBJ*, CafeOBJ,
ELAN, or Maude evaluate expressions by innermost rewriting. Since nonter-

∗Work partially supported by CICYT TIC2001-2705-C03-01, Acciones Integradas HA2001-
0059 and HU2001-0019.

†DSIC, UPV, Camino de Vera s/n, E-46022 Valencia, Spain.
{alpuente,sescobar,slucas}@dsic.upv.es

‡AG Theoretische Informatik und Logik, Institut für Computersprachen, TU Wien, Fa-
voritenstr. 9, E185/2 A-1040 Wien, Austria. gramlich@logic.at

1

mination is a frequent problem of innermost reduction, syntactic annotations
(generally specified as sequences of integers associated to function arguments,
called local strategies) have been used in OBJ2 [FGJM85], OBJ3 [GWM+00],
CafeOBJ [FN97], and Maude [CELM96] to improve efficiency and (hopefully)
avoid nontermination. Local strategies are used in OBJ programs1 for guiding
the evaluation strategy (abbr. E-strategy): when considering a function call
f(t1, . . . , tk), only the arguments whose indices are present as positive integers
in the local strategy for f are evaluated (following the specified ordering). If 0
is encountered then evaluation at the root position is attempted The limits of
using only positive annotations regarding correctness and completeness of com-
putations are discussed in [AEL02, Luc01a, Luc02b, NO01, OF00]: the obvious
problem is that the absence of some indices in the local strategies can have a
negative impact on the ability of such strategies to compute normal forms.

Example 1 Consider the following OBJ program (borrowed from [NO01]):
obj Ex1 is

sorts Nat LNat .
op 0 : -> Nat .
op s : Nat -> Nat [strat (1)] .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (1)] .
op 2nd : LNat -> Nat [strat (1 0)] .
op from : Nat -> LNat [strat (1 0)] .
vars X Y : Nat . var Z : LNat .
eq 2nd(cons(X,cons(Y,Z))) = Y .
eq from(X) = cons(X,from(s(X))) .

endo

The OBJ evaluation of 2nd(from(0)) is given by the following sequence (where
we underline the redex reduced in each step):

2nd(from(0)) → 2nd(cons(0,from(s(0))))

The evaluation stops here since reductions on the second argument of cons are
disallowed (index 2 is not included in the strategy for cons). Note that we
cannot apply the rule defining 2nd because the subterm from(s(0)) should be
further reduced. Thus, a further step is demanded (by the rule of 2nd) in order
to obtain the desired outcome:

2nd(cons(0,from(s(0))))→2nd(cons(0,cons(s(0),from(s(s(0))))))

Now, we do not need to reduce the second argument of the inner occurrence of
cons anymore, since reducing at the root position yields the final value:

2nd(cons(0,cons(s(0),from(s(s(0))))) → s(0)

Therefore, the rather intuitive notion of demanded evaluation of an argu-
ment of a function call (see [AL02] for a survey discussing this topic) arises as
a possible solution to this problem. In [NO01, OF00], negative indices are pro-
posed to indicate those arguments that should be evaluated only ‘on-demand’,

1As in [GWM+00], by OBJ we mean OBJ2, OBJ3, CafeOBJ, or Maude.

2

where the ‘demand’ is an attempt to match an argument term with the left-
hand side of a rewrite rule [Eke00, GWM+00, OF00]. For instance, in [NO01]
the authors suggest (1 -2) as the apt local strategy for cons in Example 1.
The inspiration for the local strategies of OBJ comes from lazy rewriting (LR)
[FKW00], a demand-driven technique where syntactic annotations allow the ea-
ger evaluation of function arguments, whereas the default strategy is lazy. How-
ever, the extended on-demand E-strategy of [NO01, OF00] presents a number
of drawbacks, which we formally address in the paper. The following example
illustrates that the notion of demandedness which is formalized in [NO01] needs
to be refined to be entirely satisfactory in practice.

Example 2 Consider the following OBJ program2 encoding the length function
for lists which does not allow any reduction on its argument and which uses an
auxiliary symbol length’ including an on-demand strategy annotation for its
argument:

obj Ex2 is
protecting Ex1 .
op length : LNat -> Nat [strat (0)] .
op length’ : LNat -> Nat [strat (-1 0)] .
var X : Nat . var Z : LNat .
eq length(nil) = 0 .
eq length(cons(X,Z)) = s(length’(Z)) .
eq length’(Z) = length(Z) .

endo

The expression length’(from(0)) is rewritten (in one step) to the expression
length(from(0)). No evaluation is demanded on the argument of length’ for
enabling this step and no further evaluation on length(from(0)) should be per-
formed due to the local strategy (0) of length. However, the annotation (-1 0)
of function length’ is treated in such a way that the on-demand evaluation of
the expression length’(from(0)) yields an infinite sequence (whether3 we use
the operational model in [OF00] or whether we use [NO01]). For instance,
CafeOBJ ends with a stack overflow4:

Ex2> red length’(from(0)) .
-- reduce in Ex2 : length’(from(0))
Error: Stack overflow (signal 1000)

This is because the negative annotations are implemented as marks on terms
which can (inappropriately) initiate reductions later on; see Example 6 below.

Besides the interest of on-demand strategy annotations for avoiding non-
termination in OBJ programs while ensuring correctness and completeness of

2The reserved words protecting and extending can be understood as module reuse in the
OBJ syntax.

3Actually, the operational models in [OF00] and [NO01] differ and deliver different com-
putations, see Example 7 below.

4Negative annotations are (syntactically) accepted in current OBJ implementations, namely
OBJ3, Maude, and CafeOBJ, but they have no effect on the computations of OBJ3 and Maude
whereas CafeOBJ manages negative annotations using the model of [OF00, NO01].

3

the computations, the research on on-demand strategy annotations is quite in-
teresting from the programming point of view.

Example 3 Consider the following Maude program pi which codifies the well-
known infinite series expansion to approximate number π:

π
4 = 1− 1

3 +
1
5 − 1

7 + · · ·

obj PI is
sorts Nat LNat Recip LRecip .
op 0 : -> Nat .
op s : Nat -> Nat [strat (1)] .
op posrecip : Nat -> Recip [strat (1)] .
op negrecip : Nat -> Recip [strat (1)] .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (1 -2)] .
op rnil : -> LRecip .
op rcons : Recip LRecip -> LRecip [strat (1 2)] .
op from : Nat -> LNat [strat (1 0)] .
op seriepos : Nat LNat -> LRecip [strat (1 2 0)] .
op serieneg : Nat LNat -> LRecip [strat (1 2 0)] .
op pi : Nat -> LRecip [strat (1 0)] .
vars N X Y : Nat . var Z : LNat .
eq from(X) = cons(X,from(s(X))) .
eq seriepos(0,Z) = rnil .
eq seriepos(s(N),cons(X,cons(Y,Z))) =

rcons(posrecip(Y),serieneg(N,Z)) .
eq serieneg(0,Z) = rnil .
eq serieneg(s(N),cons(X,cons(Y,Z))) =

rcons(negrecip(Y),seriepos(N,Z)) .
eq pi(X) = seriepos(X,from(0)) .

endo

A term5 pi(2) approximates the number π/4 using 2 elements of the series
expansion, i.e. the intended behavior is

pi(2)→∗ rcons(posrecip(1),rcons(negrecip(3),rnil))

where posrecip(n) denotes the positive reciprocal 1/n and negrecip(n) de-
notes −1/n. The specification uses negative annotations to obtain a terminating
and complete program, which can not be obtained using only positive annotations
(if index -2 is removed from the local strategy for cons, then the program be-
comes incomplete; and if index -2 is replaced by index 2, then the program
becomes non-terminating). Indeed, termination of the program with negative
annotations (as above) can be formally proved using the technique of Section 6
(see the formal proof in Appendix C).

5Naturals 1, 2, . . . are used as shorthand to numbers sn(0) where n = 1, 2,

4

In this paper, after some preliminaries in Section 2, in Section 3 we recall the
current proposals for dealing with on-demand E-strategy annotations in OBJ
languages and discuss some drawbacks regarding the treatment of demanded-
ness. In Section 4 we (re-)formulate the computational model of on-demand
strategy annotations by handling demandedness in a different way. We demon-
strate that the new on-demand strategy outperforms the original one. In Sec-
tion 5, we show that our definition behaves better than lazy rewriting (LR) and
on-demand rewriting (ODR), the natural extension of context-sensitive rewrit-
ing [Luc98] to deal with on-demand strategy annotations, regarding the ability
to compute (head-)normal forms. Section 6 introduces a transformation which
can be used to formally prove termination of programs that use our computa-
tional model for implementing arbitrary local strategy annotations of this type.
In order to prove the practicality of our ideas, we present in Section 7 an inter-
preter of the on-demand evaluation strategy introduced in the paper together
with some encouraging experiments. Section 8 concludes and summarizes our
contributions.

This paper is a substantially extended and improved version of [AEGL02].
In particular, the definition of the on-demand evaluation strategy has been
improved, and Section 5.2, which compares the refined on-demand evaluation
strategy of the paper with on-demand rewriting, has been added. The proofs
of all technical results are included in Appendix A. Appendix B provides the
source code of the benchmarks presented in Section 7, and Appendix C includes
the termination proof for the program pi used in Example 3 and in Section 7.

2 Preliminaries

In this paper, we follow the standard framework of term rewriting (see [BN98,
TeR03]). Given a set A, P(A) denotes the set of all subsets of A. Let R ⊆ A×A
be a binary relation on a set A. We denote the transitive closure by R+ and
its reflexive and transitive closure by R∗. An element a ∈ A is an R-normal
form, if there exists no b such that a R b. We say that b is an R-normal form
of a (written a R! b), if b is an R-normal form and a R∗b. Throughout the
paper, X denotes a countable set of variables and F denotes a signature, i.e. a
set of function symbols {f, g, . . .}, each having a fixed arity given by a function
ar : F → N. We denote the set of terms built from F and X by T (F ,X). A
term is said to be linear if it has no multiple occurrences of a single variable.

Terms are viewed as labeled trees in the usual way. Positions p, q, . . . are
represented by sequences of positive natural numbers used to address subterms
of t. We denote the empty sequence by Λ. By Pos(t) we denote the set of
positions of a term t. The set of positions of non-variable symbols in t is denoted
by PosF (t), and PosX (t) are the positions of variables in t. Given positions
p, q, we denote their concatenation by p.q. Positions are ordered by the standard
prefix ordering ≤. given a set of positions P , minimal≤(P) is the set of minimal
positions of P w.r.t. ≤. For p ∈ Pos(t), the subterm at position p of t is denoted
as t|p, and t[s]p is the term t with the subterm at position p replaced by s. The

5

symbol labeling the root of t is denoted by root(t).
A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (F ,X),

l 6∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l and r is
the right-hand side (rhs). A TRS is a pair R = (F , R) where R is a set of
rewrite rules. L(R) denotes the set of lhs’s of R. A TRS R is left-linear if for
all l ∈ L(R), l is a linear term. Given R = (F , R), we take F as the disjoint
union F = C] D of symbols c ∈ C, called constructors, and symbols f ∈ D,
called defined functions, where D = {root(l) | l → r ∈ R} and C = F−D. An
instance σ(l) of a lhs l ∈ L(R) by any substitution σ is called a redex. A term
t ∈ T (F ,X) rewrites to s (at position p), written t

p→R s (or just t → s), if
t|p = σ(l) and s = t[σ(r)]p, for l → r ∈ R, p ∈ Pos(t), and substitution σ. A
term is a head-normal form if it doesn’t reduce (in finitely many steps) to a
redex.

Given a signature F , a mapping µ : F → P(N) is a replacement map (or
F-map) if for all f ∈ F , µ(f) ⊆ {1, . . . , ar(f)} [Luc98]. The set of µ-replacing
(or simply replacing) positions Posµ(t) of a term t is: Posµ(t) = {Λ}, if t ∈ X
and Posµ(t) = {Λ} ∪ ⋃

i∈µ(f) i.Posµ(t|i), if root(t) = f . Let MF be the set
of all F-maps. The ordering v on MF , the set of all F-maps, is: µ v µ′ if
for all f ∈ F , µ(f) ⊆ µ′(f). The lattice (P(N),⊆,∅,N,∪) induces a lattice
(MF ,v, µ⊥, µ>,t): The minimum (maximum) element is µ⊥ (µ>), given by
µ⊥(f) = ∅ (µ>(f) = {1, . . . , ar(f)}) for all f ∈ F . The lub t is given by
(µ t µ′)(f) = µ(f) ∪ µ′(f) for all f ∈ F .

3 Rewriting with strategy annotations

A local strategy for a k-ary symbol f ∈ F is a sequence ϕ(f) of integers taken
from {−k, . . . ,−1, 0, 1, . . . , k} which are given in parentheses. We define an
ordering v between sequences of integers as follows: nil v L, for all sequence
L, (i1 i2 · · · im) v (j1 j2 · · · jn) if i1 = j1 and (i2 · · · im) v (j2 · · · jn), or
(i1 i2 · · · im) v (j1 j2 · · · jn) if i1 6= j1 and (i1 i2 · · · im) v (j2 · · · jn).

A mapping ϕ that associates a local strategy ϕ(f) to every f ∈ F is called an
E-strategy map [Nag99, NO01, OF00]. The extension of ordering v to strategy
maps is defined as follows: ϕ v ϕ′ if for all f ∈ F , ϕ(f) v ϕ′(f). In other
words, ϕ v ϕ′ means that ϕ(f) is a subsequence of ϕ′(f), that is, ϕ′(f) may
contain some additional indices (as compared to ϕ(f)).

The semantics of rewriting under a given E-evaluation map ϕ is usually
given by means of a mapping evalϕ : T (F ,X) → P(T (F ,X)) from terms to the
set of its computed values (technically E-normal forms).

3.1 Rewriting with positive E-strategy maps

Nagaya describes the mapping evalϕ for positive E-strategy maps ϕ (i.e., E-
strategy maps where negative indices are not allowed) by using a reduction
relation on pairs 〈t, p〉 of labeled terms t and positions p [Nag99]. Let L be the
set of all lists consisting of integers and Ln be the set of all lists of integers

6

whose absolute value does not exceed n ∈ N. Given an E-strategy map ϕ
for F , we use the signature FNϕ = {fL | f ∈ F , L ∈ Lar(f), and L v ϕ(f)}
and labeled variables XNϕ = {xnil | x ∈ X}. An E-strategy map ϕ for F is
extended to a mapping from T (F ,X) to T (FNϕ ,XNϕ) by introducing the local
strategy associated to each symbol as a subscript of the symbol. The mapping
erase : T (FNϕ ,XNϕ) → T (F ,X) removes labelings from symbols in the obvious
way. Then, given a TRS R = (F , R) and a positive E-strategy map ϕ for F ,
evalϕ is defined as evalϕ(t) = {erase(s) ∈ T (F ,X) | 〈ϕ(t), Λ〉 N→!

ϕ〈s, Λ〉}, where

the binary relation N→ϕ on T (FNϕ ,XNϕ)× N∗+ behaves as follows.

Definition 1 [Nag99, Definition 6.1.3] Given 〈t, p〉, where t ∈ T (FNϕ ,XNϕ) and

p ∈ Pos(t), 〈t, p〉 N→ϕ〈s, q〉 if and only if p ∈ Pos(t) and either

1. root(t|p) = fnil, s = t and p = q.i for some i; or

2. t|p = fi:L(t1, . . . , tk), with i > 0, s = t[fL(t1, . . . , tk)]p and q = p.i; or

3. t|p = f0:L(t1, . . . , tk), erase(t|p) is not a redex, s = t[fL(t1, . . . , tk)]p, q =
p; or

4. t|p = f0:L(t1, . . . , tk) = σ(l′), erase(l′) = l, s = t[σ(ϕ(r))]p for some
l → r ∈ R and substitution σ, q = p. 2

Intuitively, an innermost evaluation is performed, which is restricted to (and
follows the order of) those indices included in the E-strategy map. This means
that if a positive index i > 0 is found in the list labeling the symbol at t|p, then
the index is removed from the list, the “target position” is moved from p to
p.i, and the subterm t|p.i is considered next. If 0 is found, then the evaluation
of t|p is attempted: if possible, a rewriting step is performed; otherwise, the 0
is removed from the list. In both cases, the evaluation continues at the same
position p.

Example 4 Consider the OBJ program and the expression 2nd(from(0)) of
Example 1. Note that this program has only positive annotations. The evalu-
ation of expression 2nd(from(0)) produces the following sequence according to
Definition 1 (we surround the index involved in the evaluation step by a box):

〈2nd(1 0)(from(1 0)(0nil)), Λ〉
→ϕ 〈2nd(0)(from(1 0)(0nil)), 1〉
→ϕ 〈2nd(0)(from(0)(0nil)), 1.1〉
→ϕ 〈2nd(0)(from(0)(0nil)), 1〉
→ϕ 〈2nd(0)(cons(1)(0nil, from(1 0)(s(1)(0nil)))), 1〉
→ϕ 〈2nd(0)(consnil(0nil , from(1 0)(s(1)(0nil)))), 1.1〉
→ϕ 〈2nd(0)(consnil (0nil, from(1 0)(s(1)(0nil)))), 1〉
→ϕ 〈2nd(0)(consnil(0nil, from(1 0)(s(1)(0nil)))), Λ〉
→ϕ 〈2ndnil(consnil(0nil, from(1 0)(s(1)(0nil)))), Λ〉

7

2nd

?
cons
½

½=
Z

Z~
0 from

?
s

?
0

½
½

½
½

½
½

½
½

Figure 1: The positive part of the expression 2nd(cons(0,from(0))).

The evaluation stops at this point since no further evaluation step can be per-
formed, see Figure 1 where the positive (or reducible) part of the expression
2nd(cons(0,from(0))) is marked.

3.2 The on-demand evaluation strategy

On the one hand, Ogata and Futatsugi [OF00] have provided an operational
description of the on-demand evaluation strategy evalϕ where negative integers
are also allowed in local strategies. On the other hand, Nakamura and Ogata
[NO01] have described the corresponding evaluation mapping evalϕ by using a
reduction relation (similarly to [Nag99]). We consider here the latter one since
it is more abstract and independent of the CafeOBJ programming language.

Given an E-strategy map ϕ, we use the signature6 Fϕ = {f b
L | f ∈ F , L ∈

Lar(f), L v ϕ(f), and b ∈ {0, 1}} and labeled variables Xϕ = {x0
nil | x ∈ X}. An

on-demand flag b = 1 indicates that the term may be reduced if demanded. An
E-strategy map ϕ for F is extended to a mapping from T (F ,X) to T (Fϕ,Xϕ)
as follows:

ϕ(t) =
{

x0
nil if t = x ∈ X

f0
ϕ(f)(ϕ(t1), . . . , ϕ(tk)) if t = f(t1, . . . , tk)

On the other hand, the mapping erase : T (Fϕ,Xϕ) → T (F ,X) removes label-
ings from symbols in the obvious way. The (partial) function flag : T (Fϕ,Xϕ)×
N∗+ → {0, 1} returns the flag of the function symbol at a position of the term:
flag(t, p) = b if root(t|p) = f b

L. The map up : T (Fϕ,Xϕ) → T (Fϕ,Xϕ) (resp.
dn : T (Fϕ,Xϕ) → T (Fϕ,Xϕ)) switches on (resp. switches off) the on-demand
flag of each function symbol in a term simply by applying b = 1 (resp. b = 0),
i.e. up(x0

nil) = dn(x0
nil) = x0

nil, up(f b
L(t1, . . . , tk)) = f1

L(up(t1), . . . , up(tk)), and
dn(f b

L(t1, . . . , tk)) = f0
L(dn(t1), . . . , dn(tk)).

6Note that Nakamura and Ogata’s definition (as well as Nagaya’s Definition 1) uses FL
and XL instead of Fϕ and Xϕ, where the restriction to L v ϕ(f) is not considered. However,
using terms over Fϕ does not cause loss of generality; furthermore, it actually provides a more
accurate framework for formalizing and studying the strategy, since these terms are the only
class of terms involved in the computations.

8

When it is being examined whether a term t matches the left-hand side l
of a rule, a top-to-bottom and left-to-right pattern matching is performed. Let
Pos6=(t, l) = {p ∈ PosF (t) ∩ PosF (l) | root(l|p) 6= root(t|p)} be the set of
(common) positions of non-variable disagreeing symbols of terms t and l. Then,
the map dfl : T (F ,X) → N∗+∪{>} returns the first position where the term and
the lhs differ (on some non-variable positions of the lhs) or > if each function
symbol of the term coincides with l:

dfl(t) =
{

min≤lex
(Pos 6=(t, l)) if Pos 6=(t, l) 6= ∅

> otherwise

where ≤lex is the lexicographic ordering on positions: p ≤lex q iff p ≤ q or
p = w.i.p′, q = w.j.q′, i, j ∈ N, and i < j.

Similarly, given a TRS R, the map DFR : T (F ,X) → N∗+ ∪{>} returns the
first position (w.r.t. the inverse of the lexicographic order, i.e. right-to-left and
bottom-up) where the term differs w.r.t. all lhs’s:

DFR(t) =
{ > if dfl(t) = > for some l → r ∈ R

max<lex
{dfl(t) | l → r ∈ R} otherwise

Definition 2 [NO01, Definition 4.4] Given a TRS R = (F , R) and an arbi-
trary E-strategy map ϕ for F , evalϕ : T (F ,X) → P(T (F ,X)) is defined as
evalϕ(t) = {erase(s) ∈ T (F ,X) | 〈ϕ(t), Λ〉 →!

ϕ 〈s, Λ〉}. The binary relation
→ϕ on T (Fϕ,Xϕ) × N∗+ is defined as follows: 〈t, p〉 →ϕ 〈s, q〉 if and only if
p ∈ Pos(t) and either

1. root(t|p) = f b
nil, s = t and p = q.i for some i; or

2. t|p = f b
i:L(t1, . . . , tk), i > 0, s = t[f b

L(t1, . . . , tk)]p and q = p.i; or

3. t|p = f b
−i:L(t1, . . . , tk), i > 0, s = t[f b

L(t1, . . . , up(ti), . . . , tk)]p and q = p;
or

4. t|p = f b
0:L(t1, . . . , tk), s = t[t′]p, q = p where t′ is a term such that

(a) t′ = θ(ϕ(r)) if DFR(erase(t|p)) = >, t|p = θ(l′), erase(l′) = l and
l → r ∈ R.

(b) t′ = f b
L(t1, . . . , tk) if either DFR(erase(t|p)) = > and erase(t|p) is

not a redex, or DFR(erase(t|p)) = Λ, or DFR(erase(t|p)) = p′ 6= Λ

and flag(t, p.p′) = 0;

(c) t′ = f b
L(t1, . . . , ti[up(s)]p′′ , . . . , tk) if DFR(erase(t|p)) = p′ = i.p′′,

flag(t, p.p′) = 1, 〈dn(t|p.p′), Λ〉 →!
ϕ 〈s, Λ〉, and DFR(erase(t|p[s]p′)) =

p′;

(d) t′ = t|p[up(s)]p′ if DFR(erase(t|p)) = p′ 6= Λ, flag(t, p.p′) = 1,
〈dn(t|p.p′), Λ〉 →!

ϕ 〈s, Λ〉, and either p′ <lex DFR(erase(t|p[s]p′)) or
DFR(erase(t|p[s]p′)) = >. 2

9

2nd

?
cons
½

½=
Z

Z~
0 from

?
s

?
0

½
½

½
½

½
½

½
½

..

..

....................

2nd

?
cons
½

½=
Z

Z~
0 cons

½
½=

Z
Z~

s

?
0

from

?
s

?
0

½
½

½
½

½
½

½
½

..
..

............................

Figure 2: The positive and the on-demand parts of the expressions
2nd(cons(0,from(0))) and 2nd(cons(0,cons(s(0),from(s(s(0)))))).

Case 1 means that no more annotations are provided and the evaluation is com-
pleted. In case 2, a positive argument index is found and the evaluation proceeds
by selecting the subterm at such argument. In case 3, the subterm at the ar-
gument indicated by the (absolute value of the) negative index is completely
marked with on-demand flags. Case 4 considers the attempt to match the term
against the left-hand sides of the program rules. Case 4.a applies if the consid-
ered (unlabeled) subterm is a redex (which is, then, contracted). If the subterm
is not a redex, cases 4.b, 4.c and 4.d are considered, possibly involving some
on-demand evaluation steps on some subterm. The selected demanded position
for term t (w.r.t. program R) is denoted as DFR(t) (eventually, symbol > is
returned if t matches the left-hand side of some rule of the TRS). According
to DFR(t), case 4.b applies if no demanded evaluation is allowed (or required).
Cases 4.c and 4.d apply if the on-demand evaluation of the subterm t|p.p′ is
required, i.e. DFR(t|p) = p′. In both cases, the evaluation is attempted; if it
finishes, the evaluation of t|p continues according to the computed value.

Example 5 Consider the OBJ program of Example 1 but including the local
strategy (1 -2) for symbol cons.

obj Ex1A is
sorts Nat LNat .
op 0 : -> Nat .
op s : Nat -> Nat [strat (1)] .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (1 -2)] .
op 2nd : LNat -> Nat [strat (1 0)] .
op from : Nat -> LNat [strat (1 0)] .
vars X Y : Nat . var Z : LNat .
eq 2nd(cons(X,cons(Y,Z))) = Y .
eq from(X) = cons(X,from(s(X))) .

endo

10

〈2nd0
(1 0)

(from0
(1 0)(0

0
nil)), Λ〉

→ϕ 〈2nd0
(0)(from

0
(1 0)

(00
nil)), 1〉

→ϕ 〈2nd0
(0)(from

0
(0)(0

0
nil

)), 1.1〉
→ϕ 〈2nd0

(0)(from
0
(0)

(00
nil)), 1〉

→ϕ 〈2nd0
(0)(cons

0
(1 −2)

(00
nil, from

0
(1 0)(s

0
(1)(0

0
nil)))), 1〉

→ϕ 〈2nd0
(0)(cons

0
(−2)(0

0
nil

, from0
(1 0)(s

0
(1)(0

0
nil)))), 1.1〉

→ϕ 〈2nd0
(0)(cons

0
(-2)

(00
nil, from

0
(1 0)(s

0
(1)(0

0
nil)))), 1〉

→ϕ 〈2nd0
(0)(cons

0
nil

(00
nil, from

1
(1 0)(s

1
(1)(0

1
nil)))), 1〉

→ϕ 〈2nd0
(0)

(cons0
nil(0

0
nil, from

1
(1 0)(s

1
(1)(0

1
nil)))), Λ〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈from0
(1 0)

(s0
(1)(0

0
nil)), Λ〉

→ϕ 〈from0
(0)(s

0
(1)

(00
nil)), 1〉

→ϕ 〈from0
(0)(s

0
nil(0

0
nil

)), 1.1〉
→ϕ 〈from0

(0)(s
0
nil

(00
nil)), 1〉

→ϕ 〈from0
(0)

(s0
nil(0

0
nil)), Λ〉

→ϕ 〈cons0
(1−2)

(s0
nil(0

0
nil), from

0
(0)(s

0
(1)(s

0
nil(0

0
nil)))), Λ〉

→ϕ 〈cons0
−2)(s

0
nil

(00
nil), from

0
(0)(s

0
(1)(s

0
nil(0

0
nil)))), 1〉

→ϕ 〈cons0
-2)

(s0
nil(0

0
nil), from

0
(0)(s

0
(1)(s

0
nil(0

0
nil)))), Λ〉

→ϕ 〈cons0
nil(s

0
nil(0

0
nil), from

1
(0)(s

1
(1)(s

1
nil(0

1
nil)))), Λ〉

→ϕ 〈2nd0
(0)

(cons0
nil(0

0
nil, cons

1
nil(s

1
nil(0

1
nil), from

1
(0)(s

1
(1)(s

1
nil(0

1
nil)))))), Λ〉

→ϕ 〈s1
nil(0

1
nil), Λ〉

Figure 3: On-demand evaluation of term 2nd(from(0)) by Definition 2.

The evaluation of the expression 2nd(from(0)) produces the evaluation sequence
of Figure 3 according to Definition 2. Roughly speaking, the annotation -2 of
symbol cons switches on the on-demand flag of expression from(s(0)) in the
seventh evaluation step (see also Figure 2 where the positive and the on-demand
parts of the expression 2nd(from(0)) are marked). Then, in the next step,
this expression is evaluated to a head-normal form in a separate subsequence.
Finally, after the corresponding head-normal form is obtained, the symbol 2nd
at the top position is evaluated and the final outcome s(0) is delivered (see
expression 2nd(cons(0,cons(s(0),from(s(s(s(0))))))) in Figure 2 where
the subterm from(s(s(s(0)))) is not under a demanded position).

Note that the computational description of on-demand strategy annotations
above involves recursive steps. A single reduction step on a (labeled) term t
may involve the application of more than one reduction step on subterms of t
(as shown by steps 4(c) and 4(d)). In fact, the definition of a single rewriting

11

step may depend on the possibility of evaluating some arguments of the consid-
ered function call. This implies that the one-step reduction relation proposed
by Nakamura and Ogata is in general undecidable. Therefore, associated no-
tions such as the normal form property (w.r.t. their reduction relation) are also
undecidable.

Furthermore, as remarked in our introduction, the notion of demandedness
formalized in [NO01] needs to be refined in order to be entirely satisfactory in
practice.

Example 6 Following the Example 2. The on-demand evaluation of term
length’(from(0)) following Definition 2 yields the following infinite sequence:

〈length’0
(-1 0)

(from0
(1 0)(0

0
nil)), Λ〉

→ϕ 〈length’0
(0)

(from1
(1 0)(0

1
nil)), Λ〉

→ϕ 〈length0
(0)

(from 1
(1 0)(0

1
nil)), Λ〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈from0
(1 0)

(00
nil), Λ〉

→ϕ 〈from0
(0)(0

0
nil

), 1〉
→ϕ 〈from0

(0)
(00

nil), Λ〉
→ϕ 〈cons0

(1)
(00

nil, from
0
(0)(s

0
(1)(0

0
nil), Λ〉

→ϕ 〈cons0
nil(0

0
nil

, from0
(0)(s

0
(1)(0

0
nil), 1〉

→ϕ 〈cons0
nil(0

0
nil, from

0
(0)(s

0
(1)(0

0
nil)), Λ〉

→ϕ 〈length0
(0)

(cons1
nil(0

1
nil, from

1
(0)(s

1
(1)(0

1
nil)))), Λ〉

→ϕ 〈s0
(1)

(length’0
(−1 0)(from

1
(1 0)(s

1
(1)(0

1
nil)))), Λ〉

→ϕ 〈s0
nil(length’

0
(-1 0)

(from1
(1 0)(s

1
(1)(0

1
nil)))), 1〉

→ϕ · · ·

In the first reduction step, annotation −1 of symbol length’ is consumed ac-
cording to case 3 of Definition 2 and, thus, subterm from0

(1 0)(0
0
nil) is marked

with the on-demand (superscript) flag. Annotation 0 of length’ is reached and
the whole term is rewritten using rule length’(Z) = length(Z), according to
case 4(a) of Definition 2. Then, annotation 0 of length is reached but the
whole term is not a redex, and an on-demand position has to be looked for.
Here, the function DFR for calculating demanded positions returns position 1,
i.e. DFR(length(from(0))) = 1, and because this position is marked with the
on-demand flag, then, case 4(c) or 4(d) is applied and the evaluation of posi-
tion 1 is initiated (using a different subsequence). Thus, length is rewritten to
length’ and the cycle is repeated.

Note that, within the labeled term length0
(0)(from

1
(1 0)(0

1
nil)), the strategy

does not recognize that the (activated) on-demand flags on symbols from and 0
do not come from the local annotation for length. That is, the strategy does
not record the origin of on-demand flags. Hence, it (unnecessarily) evaluates the
argument of length. Moreover, at this point, this evaluation does not correspond

12

to the ‘intended’ meaning of the strategy annotations that the programmer may
have in mind (since the specific annotation (0) for length forbids reductions
on its argument).

On the other hand, the two existing definitions for the on-demand E-strategy
(namely Nakamura and Ogata’s [NO01] and Ogata and Futatsugi’s [OF00]) sen-
sibly differ. For instance, Nakamura and Ogata select a demanded position for
evaluating a given term t by taking the maximum of all positions demanded on
t by each rule of the TRS (according to the lexicographic ordering on positions).
Yet, in Ogata and Futatsugi’s selection of demanded positions, the ordering of
the rules in the program is extremely important both in the definition and at
the implementation level.

Example 7 Consider the OBJ program of Example 2 with the strategy (1 0)
for length which makes the evaluation of the call length(from(0))
non-terminating, together with the function geq defined by the following module:

obj Ex3 is
extending Ex2 .
op length : LNat -> Nat [strat (1 0)] .
sorts Bool .
op true : -> Bool .
op false : -> Bool .
op geq : Nat Nat -> Bool [strat (-1 -2 0)] .
vars X Y : Nat .
eq geq(s(X),s(Y)) = geq(X,Y) .
eq geq(X,0) = true .

endo

Consider the expression geq(length(from(0)),length(nil)). According to
Ogata and Futatsugi’s definition of on-demand E-strategy, an infinite reduction
sequence is started since position 1 is the left-most demandable position in the
first rule of the program and, thus, it is selected as demanded and its (non-
terminating) evaluation attempted. For instance, CafeOBJ ends with a stack
overflow:

Ex3> red geq(length(from(0)),length(nil)) .
-- reduce in Ex3 : geq(length(from(0)),length(nil))
Error: Stack overflow (signal 1000)

However, Nakamura and Ogata’s definition of on-demand E-strategy selects po-
sition 2 as demanded (according to the inverse of the lexicographic ordering)
and, after the evaluation, the second rule is applied, thus obtaining true (see
case 4(d) in Definition 2).

We claim that it is possible to provide a more practical framework for implement-
ing and studying OBJ computations, which may integrate the most interesting
features of modern evaluation strategies with on-demand syntactic annotations.
This framework is developed in the following.

13

4 Improving rewriting under on-demand strat-
egy annotations

As discussed at the end of the previous section, the existing operational models
for arbitrary strategy annotations have a number of drawbacks: (1) the one-
step reduction relation is, in general, undecidable; (2) the mechanization of
demandedness by using negative annotations (via the marking of terms with
flag 0 or flag 1) allows evaluation steps that shouldn’t be possible, since (3) it
does not properly keep track of the origin of the marks (lack of memory, see
Example 6 above). Here, we want to introduce a further consideration which
can be used for improving the previous definitions. Let us illustrate it by means
of an example.

Example 8 Consider the OBJ program of Example 7 together with the following
function lt:

obj Ex4 is
protecting Ex3 .
op lt : Nat Nat -> Bool [strat (-1 -2 0)] .
vars X Y : Nat .
eq lt(0,s(Y)) = true .
eq lt(s(X),s(Y)) = lt(X,Y) .

endo

Consider the expression t = lt(length(from(0)),0), which is a head-normal
form since no possible evaluation could enable the expression to match the left-
hand side of a rule due to subterm 0 at position 2. Neither Nakamura and
Ogata’s nor Ogata and Futatsugi’s formulations are able to avoid evaluations
on t. For instance, CafeOBJ ends with a stack overflow:

Ex4> red lt(length(from(0)),0).
-- reduce in Ex4 : lt(length(from(0)),0)
Error: Stack overflow (signal 1000)

Nevertheless, by exploiting the standard distinction between constructor and de-
fined symbols of a signature in the presence of a TRS, it is easy to detect that
no rule for lt could ever be applied. Indeed, 0 is a constructor symbol in the
input term t and, hence, it cannot be reduced for improving the matching of t
against the left-hand side of the rule for lt. See [AFJV97, AL02, MR92] for
a more detailed motivation and formal discussion of the use of these ideas for
defining and using demand-driven strategies.

In the following, we propose a refined (and fixed) definition of the on-demand
E-strategy which takes into account all previous considerations. The two im-
portant points are the use of two lists of annotations for each symbol (instead
of only one for the on-demand evaluation of Definition 2) and a special flag for
avoiding recursive definitions of the strategy.

Given a E-strategy map ϕ, we use the signature7 F]
ϕ = ∪{fL1|L2 , fL1|L2

| f ∈
F ∧ L1, L2 ∈ Lar(f).(L1++L2 v ϕ(f))} and labeled variables X]

ϕ = {xnil|nil |
7The function ++ defines the concatenation of two sequences of integers.

14

x ∈ X} for marking ordinary terms t ∈ T (F ,X) as terms t ∈ T (F]
ϕ,X]

ϕ).
Overlining the root symbol of a subterm means that no evaluation is required
for that subterm and the control goes back to the parent; the auxiliary list L1 in
the subscript L1 | L2 is interpreted as a kind of memory of previously considered
annotations. We use f] to denote f or f for a symbol f ∈ F . We define the list
of active indices of a labeled symbol f]

L1|L2
as

active(f]
L1|L2

) =
{

L1 if L1 6= nil
L2 if L1 = nil

The operator ϕ is extended to a mapping from T (F ,X) to T (F]
ϕ,X]

ϕ) as follows:

ϕ(t) =
{

xnil|nil if t = x ∈ X
fnil|ϕ(f)(ϕ(t1), . . . , ϕ(tk)) if t = f(t1, . . . , tk)

Also, the operator erase : T (F]
ϕ,X]

ϕ) → T (F ,X) drops labelings from terms.
We define the set of demanded positions of t ∈ T (F ,X) w.r.t. l (a lhs of a

rule defining root(t)), i.e. the set of (positions of) maximal disagreeing subterms
as:

DPl(t) =
{

minimal≤(Pos 6=(t, l)) if minimal≤(Pos 6=(t, l)) ⊆ PosD(t)
∅ otherwise

Note that the problem described in Example 8 is solved (along the lines of
[MR92]) by restricting the attention to disagreeing positions that correspond to
defined symbols (by using PosD(t)).

Example 9 Continuing Example 8 where l1 = lt(0,s(Y)) and
l2 = lt(s(X),s(Y)) are the lhs’s of the rules. Let t1 = lt(length(from(0)),0),
we have DPl1(t1) = ∅ and DPl2(t1) = ∅, i.e. no position is demanded by
l1 or l2 because of a constructor conflict with subterm 0 at position 2. Let
t2 = lt(length(from(0)),length(nil)), we have DPl1(t2) = {1, 2} and
DPl2(t2) = {1, 2}, i.e. positions 1 and 2 are demanded by l1 and l2 because both
positions are rooted by defined symbols. Finally, given t3 = lt(0,length(nil)),
we have DPl1(t3) = {2} but DPl2(t3) = ∅, i.e. position 2 is demanded by l1 but
not by l2 because of a constructor conflict with l2.

We define the set of positive positions of a term s ∈ T (F]
ϕ,X]

ϕ) as PosP (s) =
{Λ} ∪ {i.PosP (s|i) | i > 0 and active(root(s)) contains i} and the set of active
positions as PosA(s) = {Λ} ∪ {i.PosA(s|i) | i > 0 and active(root(s)) contains
i or −i}. We also define the set of positions with empty annotation list as
Posnil(s) = {p ∈ Pos(s) | root(s|p) = fL|nil}. Then, the set of active demanded
positions of a term t ∈ T (F]

ϕ,X]
ϕ) w.r.t. l (a lhs of a rule defining root(erase(t)))

is defined as follows:

ADPl(t) =
{

DPl(erase(t)) ∩ PosA(t) if DPl(erase(t)) 6⊆ PosP (t) ∪ Posnil(t)
∅ otherwise

15

length(1)|(0)

?
fromnil|(1 0)

?
0nil|nil

length(−1)|(0)

?
fromnil|nil

?
0nil|nil

lengthnil|(0)

?
fromnil|(1 0)

?
0nil|nil

length(−1)|(0)

?
fromnil|(1 0)

?
0nil|nil

..

..

t1 t2 t3 t4
Figure 4: The positive and the on-demand parts of the terms of Example 10.

and the set of active demanded positions of t ∈ T (F]
ϕ,X]

ϕ) w.r.t. TRS R as
ADPR(t) = ∪{ADPl(t) | l → r ∈ R ∧ root(erase(t)) = root(l)}.

Note that the restriction of active demanded positions to non-positive and
non-empty positions is consistent w.r.t the intended meaning of strategy anno-
tations since positive or empty positions should not be evaluated on-demand.

Example 10 Continuing Example 2 consider l = length(nil) (the lhs of the
first rule for length). For t1 = length(1)|(0)(fromnil|(1 0)(0nil|nil)), we have
DPl(erase(t1)) = {1} but ADPl(t1) = ∅, i.e. position 1 is demanded by l but
it is a positive position. For t2 = length(−1)|(0)(fromnil|nil(0nil|nil)), we have
ADPl(t2) = ∅, i.e. position 1 is also demanded by l but it is rooted by a symbol
with an empty annotation list. For t3 = lengthnil|(0)(fromnil|(1 0)(0nil|nil)),
we have ADPl(t3) = ∅, i.e. position 1 is demanded by l too but it is not an
active position. Finally, for t4 = length(−1)|(0)(fromnil|(1 0)(0nil|nil)), we have
ADPl(t4) = {1}. See Figure 4 for the positive and the on-demand parts of each
of these terms.

When different active demanded positions are available in the set ADPl(s),
we use an ordering ≤s which is based on the user’s annotations to select the
position (see the use of min≤s below). Given a term s ∈ T (F]

ϕ,X]
ϕ), the total

ordering ≤s between active positions of s is defined as (1) Λ ≤s p for all p ∈
PosA(s); (2) if i.p, i.q ∈ PosA(s) and p ≤s|i q, then i.p ≤s i.q; and (3) if i.p, j.q ∈
PosA(s), i 6= j, and i (or −i) appears before j (or −j) in active(root(s)), then
i.p ≤s j.q. Now, we are able to define the set of demanded positions which
would be considered for reduction. We define the set ODR(s) of on-demand
positions of a term s ∈ T (F]

ϕ,X]
ϕ) w.r.t. TRS R as follows:

if ADPR(s) = ∅ then ODR(s) = ∅ else ODR(s) = {min≤s(ADPR(s))}

Example 11 Continuing Example 9. We have ODR(t1) = ∅ where ADPR(t1) =
∅, ODR(t2) = {1} where ADPR(t2) = {1, 2}, and ODR(t3) = {2} where
ADPR(t3) = {2}.

In order to overcome the undecidability of the evaluation strategy of Definition
2, we use symbols f to mark non-evaluable positions, which helps the evaluation
of a demanded position to come back to the position which demanded the evalu-
ation. Given a term t ∈ T (F]

ϕ,X]
ϕ) and a position p ∈ Pos(t), mark(t, p) is the

16

term s with all symbols above p (except the root) marked as non-evaluable, in
symbols Pos(s) = Pos(t) and ∀q ∈ Pos(t), if Λ < q < p and root(t|q) = fL1|L2 ,
then root(s|q) = fL1|L2

, otherwise root(s|q) = root(t|q).

Example 12 Consider the program of Example 5 and the term t = 2nd(1)|(0)(
cons(1 −2)|nil(0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil)))). We have that

mark(t, 1.2) = 2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil))))

Finally, we define a binary relation]→ϕ on the set T (F]
ϕ,X]

ϕ)× N∗+, such that
a single reduction step on a (labeled) term t does not involve the application of
recursive reduction steps on t. In the following definition, the symbol @ denotes
appending an element at the end of a list.

Definition 3 Given a TRS R = (F , R) and an arbitrary E-strategy map ϕ
for F , evalϕ : T (F ,X) → P(T (F ,X)) is defined as evalϕ(t) = {erase(s) ∈
T (F ,X) | 〈ϕ(t), Λ〉]→!

ϕ 〈s, Λ〉}. The binary relation]→ϕ on T (F]
ϕ,X]

ϕ)×N∗+ is
defined as follows: 〈t, p〉]→ϕ 〈s, q〉 if and only if p ∈ Pos(t) and either

1. t|p = fL|nil(t1, . . . , tk), s = t and p = q.i for some i; or

2. t|p = fL1|i:L2(t1, . . . , tk), i > 0, s = t[fL1@i|L2(t1, . . . , tk)]p and q = p.i; or

3. t|p = fL1|−i:L2(t1, . . . , tk), i > 0, s = t[fL1@−i|L2(t1, . . . , tk)]p and q = p;
or

4. t|p = fL1|0:L2(t1, . . . , tk) = σ(l′), erase(l′) = l, s = t[σ(ϕ(r))]p for some
l → r ∈ R and substitution σ, q = p; or

5. t|p = fL1|0:L2(t1, . . . , tk), erase(t|p) is not a redex, ODR(t|p) = ∅, s =
t[fL1|L2(t1, . . . , tk)]p, and q = p; or

6. t|p = fL1|0:L2(t1, . . . , tk), erase(t|p) is not a redex, ODR(t|p) = {p′}, s =
t[mark(t|p, p′)]p, q = p.p′; or

7. t|p = fL1|L2
(t1, . . . , tk), s = t[fL1|L2(t1, . . . , tk)]p and p = q.i for some i.

2

Cases 1 and 2 of Definition 3 essentially correspond to cases 1 and 2 of
Definitions 1 and 2; that is, (1) no more annotations are provided and the
evaluation is completed, or (2) a positive argument index is provided and the
evaluation proceeds by selecting the subterm at this argument (note that the
index is stored). Case 3 only stores the negative index for further use. Cases
4, 5, and 6 consider the attempt to match the term against the left-hand sides
of the program rules. Case 4 applies if the considered (unlabeled) subterm is a
redex (which is, then, contracted). If the subterm is not a redex, cases 5 and
6 are considered (possibly involving some on-demand evaluation). We use the
lists of indices labeling the symbols for fixing the concrete positions on which it

17

〈2ndnil|(1 0)(fromnil|(1 0)(0nil|nil)), Λ〉
]→ϕ 〈2nd(1)|(0)(fromnil|(1 0)(0nil|nil)), 1〉
]→ϕ 〈2nd(1)|(0)(from(1)|(0)(0nil |nil)), 1.1〉
]→ϕ 〈2nd(1)|(0)(from(1)|(0)(0nil|nil)), 1〉
]→ϕ 〈2nd(1)|(0)(consnil|(1 −2)(0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil)))), 1〉
]→ϕ 〈2nd(1)|(0)(cons(1)|(-2)(0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil)))), 1〉
]→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil (0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil)))), 1〉
]→ϕ 〈2nd(1)|(0)(cons(1 -2)|nil(0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil)))), Λ〉
]→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, fromnil|(1 0)(snil|(1)(0nil|nil)))), 1.2〉
]→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, fromnil|(0)(snil|(1)(0nil|nil)))), 1.2.1〉
]→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, fromnil|(0)(s(1)|nil(0nil|nil)))), 1.2.1.1〉
]→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, fromnil|(0)(s(1)|nil (0nil|nil)))), 1.2.1〉
]→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, from(1)|(0)(s(1)|nil(0nil|nil)))), 1.2〉
]→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, consnil|(1 −2)(s(1)|nil(0nil|nil),

fromnil|(1 0)(snil|(1)(s(1)|nil(0nil|nil)))))), 1.2〉
]→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, cons(1)|(−2)(s(1)|nil (0nil|nil), · · ·))), 1.2.1〉
]→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, cons(1)|(-2)(s(1)|nil(0nil|nil), · · ·))), 1.2〉
]→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, cons(1 −2)|nil (s(1)|nil(0nil|nil), · · ·))), 1.2〉
]→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil (0nil|nil, cons(1 −2)|nil(s(1)|nil(0nil|nil), · · ·))), 1〉
]→ϕ 〈2nd(1)|(0)(cons(1 −2)|nil(0nil|nil, cons(1 −2)|nil(s(1)|nil(0nil|nil), · · ·))), Λ〉
]→ϕ 〈s(1)|nil(0nil|nil), Λ〉

Figure 5: On-demand evaluation of term 2nd(from(0)) by Definition 3.

is safe to allow on-demand evaluations; in particular, the first (memoizing) list is
crucial for achieving this (by means of the function active and the order ≤s used
in the definition of the set ODR(s) of on-demand positions of a term s). Case 5
applies if no demanded evaluation is allowed (or required). Case 6 applies if the
on-demand evaluation of the subterm t|p.p′ is required, i.e. ODR(t|p) = {p′}. In
this case, the symbols lying on the path from t|p to t|p.p′ (excluding the ending
ones) are overlined. Then, the evaluation process continues on term t|p.p′ (with
the overlined symbols above it). Once the evaluation of t|p.p′ is completed, the
only possibility is the repeated (but possibly idle) application of steps issued
according to the last case 7 which sends the evaluation process back to position
p (which originated the on-demand evaluation) using overlined symbols f .

Example 13 Following the Example 5, the appropriate evaluation sequence for
the term 2nd(from(0)) via evalϕR is depicted in Figure 5, which is similar to
that shown in Example 5. The main difference w.r.t. the evaluation sequence of
Example 5 is the overline of symbol cons in order to avoid recursive definitions

18

of the evaluation strategy and the use of two annotation list to keep an accurate
track of annotations.

Example 14 Following Examples 2 and 6. The on-demand evaluation of
length’(from(0)) under the refined on-demand strategy is the following:

〈length’nil|(-1 0)(fromnil|(1 0)(0nil|nil)), Λ〉
]→ϕ 〈length’(−1)|(0)(fromnil|(1 0)(0nil|nil)), Λ〉
]→ϕ 〈lengthnil|(0)(fromnil|(1 0)(0nil|nil)), Λ〉
]→ϕ 〈lengthnil|nil(fromnil|(1 0)(0nil|nil)), Λ〉

In the first step, negative annotation −1 of length’ is recorded for further use
according to case 3 of Definition 3. Annotation 0 of length’ is processed and
the whole term is rewritten using rule length’(Z) = length(Z), according to
case 4 of Definition 3. Then, annotation 0 of length is reached but the whole
term cannot be rewritten since it is not a redex and demanded positions have to
be looked for. However, no demanded position arises since the memoizing list of
strategy annotations for length is empty (see ADPR(t3) in Example 10 above).
Therefore, we obtain length(from(0)) as the computed value of the evaluation,
according to case 5 of Definition 3.

In the following, we study different properties of our on-demand evaluation
strategy.

4.1 Properties of the refined on-demand strategy

The following theorem shows that, for positive strategy annotations, each re-
duction step with]→ϕ exactly corresponds to Nagaya’s original relation N→ϕ

of Section 3.1. For an E-strategy map ϕ and a term t ∈ T (F]
ϕ,X]

ϕ), we define
positive : T (F]

ϕ,X]
ϕ) → T (FNϕ ,XNϕ) as positive(xnil|nil) = xnil for x ∈ X and

positive(f]
L1|L2

(t1, . . . , tn)) = fL′2(positive(t1), . . . , positive(tn)) where L′2 is L2

without negative indices.

Theorem 1 Let R be a TRS and ϕ be a positive E-strategy map. Let t, s ∈
T (F]

ϕ,X]
ϕ) and p ∈ Pos(t). Then, 〈t, p〉]→ϕ 〈s, q〉 if and only if

〈positive(t), p〉 N→ϕ〈positive(s), q〉.

Sometimes, it is interesting to get rid of the ordering among indices in local
strategies. Then, we use replacement maps (µ ∈ MF) [Luc98]. Let µcan

R be
the canonical replacement map, i.e. the most restrictive replacement map which
ensures that the non-variable subterms of the left-hand sides of the rules of R
are replacing, which is easily obtained from R: for all f ∈ F , i ∈ {1, . . . , ar(f)},
i ∈ µcan

R (f) iff ∃l ∈ L(R), p ∈ PosF (l), (root(l|p) = f ∧ p.i ∈ PosF (l))
[Luc98]. Let CMR = {µ ∈ MF | µcan

R v µ} be the set of replacement maps which
are less than or equally restrictive as µcan

R [Luc98]. Given an E-strategy map ϕ,

19

let µϕ be the following replacement map given by µϕ(f) = {|i| | i ∈ ϕ(f)∧i 6= 0}.
We say that ϕ is a canonical E-strategy map (and, slightly abusing notation,
we write ϕ ∈ CMR) if µϕ ∈ CMR. Given an E-strategy map, let ϕN be the E-
strategy map obtained from ϕ by removing all negative indices for each symbol
f ∈ F . Note that ϕN v ϕ, for all E-strategy map ϕ.

In the following, we show that for E-strategy maps ϕ whose positive part
(the sublists of positive indices) ϕN is canonical, extra negative annotations
can be completely disregarded. This means that negative annotations are only
meaningful if the positive indices do not include all indices in the canonical
replacement map of the TRS.

Theorem 2 Let R be a TRS and ϕ be an E-strategy map such that ϕN ∈ CMR.
Let t, s ∈ T (F]

ϕ,X]
ϕ) and p ∈ Pos(t). Then, 〈t, p〉]→ϕ 〈s, q〉 if and only if

〈positive(t), p〉 N→ϕN〈positive(s), q〉.
Example 14 above shows that restricting the evaluation by using on-demand
strategy annotations can deliver terms which are not even head-normal forms
w.r.t. →R. The following result establishes conditions ensuring that the normal
forms computed by our refined on-demand strategy are ordinary head-normal
forms (w.r.t. the TRS). A TRS R = (C] D, R) is a constructor system (CS) if
for all f(l1, . . . , lk) → r ∈ R, li ∈ T (C,X), for 1 ≤ i ≤ k.

Theorem 3 Let R = (F , R) = (C] D, R) be a left-linear CS, ϕ ∈ CMR and
ϕ(f) end with 0 for all f ∈ D. Let t ∈ T (F ,X). If s ∈ evalϕ(t), then s is a
head-normal form of t.

Left-linearity and CS conditions cannot be dropped, as [Luc01a] has shown for
on-demand rewriting. The following two counterexamples are an adaptation of
the ones in [Luc01a].

Example 15 Consider the following TRS R from [Luc01a] which is not a CS:
f(g(x,a)) → a g(a,b) → g(b,a)

Let ϕ(f) = (-1 0), ϕ(g) = (1 2 0), and ϕ(a) = ϕ(b) = nil. The term
t = f(g(a,b)) is not a head-normal form since f(g(a,b)) → f(g(b,a)) → a.

However, the head-normal form of t is not computed by]→ϕ :

〈fnil|(-1 0)(gnil|(1 2 0)(anil|nil, bnil|nil)), Λ〉
]→ϕ 〈f(−1)|(0)(gnil|(1 2 0)(anil|nil, bnil|nil)), Λ〉
]→ϕ 〈f(−1)|nil(gnil|(1 2 0)(anil|nil, bnil|nil)), Λ〉

Note that 1 6∈ Pos6=(f(g(a,b)), f(g(x,a))), i.e. position 1 of t is not demanded
by lhs f(g(x,a)).

Example 16 Consider the following TRS R from [Luc01a] which is not left-
linear:

f(x,x) → x a → b

20

Let ϕ(f) = (-1 -2 0), ϕ(a) = (0), and ϕ(b) = nil. Term t = f(a,b) is not
a head-normal form since f(a,b) → f(b,b) → b. However, the head-normal
form of t is not computed by]→ϕ :

〈fnil|(-1 −2 0)(anil|nil, bnil|nil), Λ〉
]→ϕ 〈f(−1)|(-2 0)(anil|nil, bnil|nil), Λ〉
]→ϕ 〈f(−1 −2)|(0)(anil|nil, bnil|nil), Λ〉
]→ϕ 〈f(−1 −2)|nil(anil|nil, bnil|nil), Λ〉

Note that 1.1 6∈ Pos 6=(f(a,b), f(x,x)), i.e. position 1.1 of t is not demanded
by lhs f(x,x).

Theorem 3 suggests the following normalization via ϕ-normalization pro-
cedure to obtain normal forms of a term t: given an E-strategy map ϕ and
s = f(s1, . . . , sk) ∈ evalϕ(t), the evaluation of t proceeds by (recursively) nor-
malizing s1, . . . , sk using evalϕ. It is not difficult to see that confluence and
ϕ-termination of the TRS guarantee that this procedure actually describes a
normalizing strategy (see [Luc01a, Luc02a]).

In the next section, we show that our on-demand strategy improves lazy
rewriting, a popular demand-driven technique to perform lazy functional com-
putations which inspired the development of local strategies in OBJ, and on-
demand rewriting, the natural extension of context-sensitive rewriting to deal
with on-demand strategy annotations.

5 Comparison with other techniques dealing with
on-demand annotations

5.1 Lazy rewriting

In lazy rewriting [FKW00, Luc02b], reductions are performed on a particular
kind of labeled terms. Nodes (or positions) of a term t are labeled with e for
the so-called eager positions or with ` for the so-called lazy ones: let F be a
signature and L = {e, `}. Then, F × L (or FL) is a new signature of labeled
symbols. The labeling of a symbol f ∈ F is denoted by fe or f ` rather than
〈f, e〉 or 〈f, `〉. Labeled terms are terms in T (FL,XL). Given t ∈ T (FL,XL)
and p ∈ Pos(t), if root(t|p) = xe (= x`) or root(t|p) = fe (= f `), then we say
that p is an eager (resp. lazy) position of t.

Given a replacement map µ ∈ MF and s ∈ T (F ,X), labelµ(s) denotes
the following intended labeling of s: (1) the topmost position Λ of labelµ(s) is
eager; (2) given a position p ∈ Pos(labelµ(s)) and i ∈ {1, . . . , ar(root(s|p))}, the
position p.i of labelµ(s) is lazy if i 6∈ µ(root(s|p)), or is eager, otherwise.

Example 17 Consider the program of Example 1 (as a TRS) and the replace-
ment map µ given by µ(2nd) = µ(from) = µ(cons) = µ(s) = {1}. Then,
the labeling of s = 2nd(cons(0,from(s(0)))) is t = labelµ(s) =

21

2nde

?
conse

³³³) PPPq
0e from`

?
se

?
0e

#
#

#
#

#
#

,,,

Figure 6: The active part of the expression 2nd(cons(0,from(0))) w.r.t. lazy
rewriting.

2nde(conse(0e,from`(se(0e)))). Thus, Λ, 1, 1.1, 1.2.1, and 1.2.1.1 are eager
positions; position 1.2 is lazy (see Figure 6).

Given t ∈ T (FL,XL), erase(t) is the term in T (F ,X) that results from
removing the labels of t.

As remarked above, given t ∈ T (FL,XL), a position p ∈ Pos(t) is eager
(resp. lazy) if root(t|p) is labeled with e (resp. `). The so-called active positions
of a labeled term t ∈ T (FL,XL), denoted by Act(t), are those positions which
are always reachable from the root of the term via a path of eager positions. For
instance, positions Λ, 1, and 1.1 are active in term t of Example 17; positions
1.2.1 and 1.2.1.1 are eager but not active, since position 1.2 below is lazy in t. In
lazy rewriting, the set of active nodes may increase as reduction of labeled terms
proceeds. Each lazy reduction step on labeled terms may have two different
effects:

1. changing the “activation” status of a given position within a term, or

2. performing a rewriting step (always on an active position).

The activation status of a lazy position immediately below an active position
within a (labeled) term can be modified if the position is ‘essential’, i.e. ‘its
contraction may lead to new redexes at active nodes’ [FKW00].

Definition 4 (Matching modulo laziness [FKW00]) Let l ∈ T (F ,X) be lin-
ear, t ∈ T (FL,XL), and p be an active position of t. Then, l matches modulo
laziness s = t|p if either l ∈ X , or l = f(l1, . . . , lk), s = fe(s1, . . . , sk) and, for
all i ∈ {1, . . . , k}, if p.i is eager, then li matches modulo laziness si. If position
p.i is lazy and li 6∈ X , then position p.i is called essential. 2

If p is an active position in t ∈ T (FL,XL) and l → r is a rewrite rule of a left-
linear TRS R such that l matches modulo laziness t|p giving rise to an essential

position q of t and t|q = f `(t1, . . . , tk), then we write t
A→ t[fe(t1, . . . , tk)]q for

denoting the activation of position p.

22

Lazy rewriting reduces active positions. Let p be an active position of t ∈
T (FL,XL), u = t|p and l → r be a rule of a left-linear TRS R such that l

matches erase(u) using substitution σ, then, t
R→µ s, where s is obtained from

t by replacing t|p in t by labelµ(r) with all its variables instantiated according
to σ but preserving its label according to labelµ(r) (see [Luc02b] for a formal
definition).

Example 18 Consider the program of Example 1 (as a TRS) and the term t
of Example 17. The reduction step for t corresponds to:

2nde(conse(0e,from`(se(0e))))
A→ 2nde(conse(0e,frome(se(0e))))
R→µ 2nde(conse(0e,conse(se(0e):efrom`(se(se(0e))))))

Note that this last term is an A→-normal form.

The lazy term rewriting relation on labeled terms (LR) is LR→µ = A→ ∪ R→µ

and the evaluation LR-evalµ(t) of a term t ∈ T (F ,X) using LR is given by

LR-evalµ(t) = {erase(s) ∈ T (F ,X) | labelµ(t) LR−→!
µ s}. We say that a TRS

is LR(µ)-terminating if, for all t ∈ T (F ,X), there is no infinite LR→µ-rewrite
sequence starting from labelµ(t) [Luc02b].

In the following, we show that each evaluation step of our refined on-demand
strategy is included into some evaluation steps of lazy rewriting. First, we
give some auxiliary definitions and results for Theorem 4. Given a term t ∈
T (F]

ϕ,X]
ϕ) and p ∈ Pos(t), we translate the labeling of terms in T (F]

ϕ,X]
ϕ) into

the labeling of T (FL,XL) by considering only positive annotations and trans-
forming overlined symbols and the symbols at the position under consideration
into eager symbols, as follows:

lazyp
ϕ(t) = ρ′′p(ρ′t(labelµϕN (erase(t)))) where

(1) ρ′t(f b(t1, . . . , tn)) = fe(ρ′s1
(t1), . . . , ρ′sn

(tn)) if t = fL1|L2
(s1, . . . , sn),

(2) ρ′t(f
b(t1, . . . , tn)) = f b(ρ′s1

(t1), . . . , ρ′sn
(tn)) if t = fL1|L2(s1, . . . , sn),

(3) ρ′′p(s) = s[fe(s1, . . . , sk)]p for s|p = f b(s1, . . . , sk)

We define the ordering ≤lazy between terms T (FL,XL) by extending the or-
dering fe ≤lazy fe and f ` ≤lazy fe, for all f ∈ F , to terms in the obvious
way.

The following theorem shows that each evaluation step of our refined on-
demand strategy corresponds to some evaluation steps of lazy rewriting. Also,
it shows that lazy rewriting (potentially) activates as many symbols (within a
term) as our strategy does (we use the ordering ≤lazy for expressing this fact).
Note that lazy rewriting is defined only for left-linear TRSs (see Definition 4).

Theorem 4 Let R be a left-linear TRS and ϕ be an E-strategy map. Let t ∈
T (F]

ϕ,X]
ϕ), p ∈ Pos(t) and µ = µϕN . If 〈t, p〉]→ϕ 〈s, q〉 and p ∈ Act(lazyp

ϕ(t)),

23

then q ∈ Act(lazyq
ϕ(s)) and lazyp

ϕ(t) LR−→∗
µ s′ for s′ ∈ T (FL,XL) such that

lazyq
ϕ(s) ≤lazy s′.

In general, our strategy is strictly more restrictive than LR as the following
example shows.

Example 19 Consider the program R (as a TRS) and the E-strategy map ϕ
of Example 2. Consider the replacement map µ = µϕ. In Example 25 below,
we prove that R is ϕ-terminating. However, LR enters an infinite reduction
sequence starting with the expression labelµ(length’(from(0))):

length’e(from`(0e))
R→µ lengthe(from`(0e))
A→ lengthe(frome(0e))
R→µ lengthe(conse(0e, from`(se(0e))))
R→µ se(length’e(from`(se(0e))))
LR→µ · · ·

Note that if no positive annotation is provided for an argument of a symbol, then
LR freely demands this argument. Then, in contrast to ϕ (where ϕ(length) =
(0)), LR can evaluate position 1 in the expression length(from(0)).

5.2 On-demand rewriting

A replacement map µ ∈ MF specifies which arguments of symbols in F may
be reduced. In context-sensitive rewriting (CSR [Luc98]), we (only) rewrite
subterms at replacing positions: t µ-rewrites to s, written t ↪→R(µ) s (or simply
t ↪→µ s or t ↪→ s), if t

p→R s and p ∈ Posµ(t).

Example 20 Consider R in Example 1 and the replacement map
µ(s) = µ(2nd) = µ(from) = µ(cons) = {1} (which corresponds to the strat-
egy map ϕ of Example 1). Then, we have:

2nd(from(0)) ↪→µ 2nd(cons(0,from(s(0))))

where, since µ(cons) = {1}, 2nd(cons(0,from(s(0)))) cannot be further µ-
rewritten.

↪→µ-normal forms are called µ-normal forms. A TRS R is µ-terminating if ↪→µ

is terminating (see [Luc01a]).
The non-replacing positions of a term t are denoted by Posµ(t) = Pos(t)−

Posµ(t); we also use Lazyµ(t) = minimal≤(Posµ(t)) which covers the non-
replacing positions of t, i.e., for all p ∈ Posµ(t), there exists q ∈ Lazyµ(t) such
that q ≤ p. Given a pair 〈µ, µD〉 of replacement maps µ and µD, on-demand
rewriting (ODR) is defined as an extension of CSR (under µ), where on-demand
reductions are also permitted according to µD. Given f ∈ F , indices j ∈ µD(f)
aim at enabling reductions on a subterm tj of a function call f(t1, . . . , tj , . . . , tk)

24

if they can eventually lead to match a pattern of a rule defining f (i.e., l → r ∈ R
such that root(t) = f). After its formal definition, we will explain the notion and
give an example. The chain of symbols lying on positions above/on p ∈ Pos(t) is
prefix t(Λ) = root(t), prefix t(i.p) = root(t).prefix t|i(p). The strict prefix sprefix
is sprefixt(Λ) = Λ, sprefixt(p.i) = prefix t(p).

Definition 5 (On-demand rewriting) [Luc01a] Let R = (F , R) be a TRS
and µ, µD ∈ MF . Then, t

p
↪→〈µ,µD〉s (or simply t ↪→〈µ,µD〉 s), if t

p→ s and either

1. p ∈ Posµ(t), or

2. p ∈ PosµtµD (t) − Posµ(t) and there exist e ∈ Posµ(t), p1, . . . , pn ∈
Lazy〈µ,µD〉(t), r1, . . . , rn, t′ ∈ T (F ,X), l → r ∈ R, and substitution σ
such that

(1) e ≤ p, t′ = t[r1]p1 · · · [rn]pn
, t′|e = σ(l) and

(2) for all q ∈ Pos(l) s.t. sprefixt|e(q) = sprefixl(q), whenever e.q ≤ p,
we have that l|q 6∈ X .

Here, Lazy〈µ,µD〉(t) = Lazyµ(t) ∩ PosµtµD (t). 2

Therefore, given a term t, a rewriting step t
p→ s is on-demand (w.r.t. µ and

µD) if either

(i) t
p

↪→µ s, or

(ii) t
p

↪→µtµD s and reducing t|p may contribute to a future µ-rewriting step
at µ-replacing position e, using some rule l → r.

Such a contribution is approximated by checking whether the replacement of
some non-µ-replacing maximal subterms of t would eventually make the match-
ing possible (condition 2(1) of Definition 5). On-demand indices in µD determine
the positions (in Lazy〈µ,µD〉(t)) of the subterms of t that can be refined. Note
that the position p on which the rewriting step is performed is always covered
by some position pi ∈ Lazy〈µ,µD〉(t), i.e., pi ≤ p and pi is a position demanded
by the lhs l, which is (possibly) applicable at position e. On the other hand,
the position p is constrained to having no variable position of l covering p (con-
dition 2(2) of Definition 5); otherwise, the reduction at t|p would not improve
the matching.

Example 21 Consider the TRS R of Example 5, the replacement map µ of
Example 20 and the following on-demand replace map µD(cons) = {2} and
µ(s) = µ(2nd) = µ(from) = ∅ (where the union of µ and µD corresponds to the
apt strategy map ϕ of Example 5). Now we have:

2nd(from(0)) ↪→〈µ,µD〉 2nd(cons(0,from(s(0))))
↪→〈µ,µD〉 2nd(cons(0,s(0):from(s(s(0)))))
↪→〈µ,µD〉 s(0)

25

but
2nd(cons(0,cons(s(0),from(s(s(0))))))
6↪→〈µ,µD〉 2nd(cons(0,cons(s(0),cons(s(s(0)),from(s(s(s(0))))))))

since 1.2.2 ∈ Pos(l) and sprefixt(1.2.2) = sprefixl(1.2.2), but l|1.2.2 ∈ X (where
l = 2nd(x:y:z)).

In the following, we show that each evaluation step of our refined on-demand
strategy is included in (at most) one evaluation step of on-demand rewriting.
Given a term t ∈ T (F]

ϕ,X]
ϕ) and a position p ∈ PosA(t), we say the tuple 〈t, p〉

is consistent w.r.t. TRS R and strategy map ϕ (or simply consistent) if there
exists s ∈ T (F ,X) such that 〈ϕ(s), Λ〉]→∗

ϕ 〈t, p〉.
Theorem 5 Let R be a left-linear CS and ϕ be an E-strategy map such that
µϕN(c) = ∅ for c ∈ C. Let µ, µD ∈ MF be such that µ = µϕN and µ t µD = µϕ.
Let t ∈ T (F]

ϕ,X]
ϕ) and p ∈ PosA(t). If 〈t, p〉]→ϕ 〈s, q〉 and 〈t, p〉 is consistent,

then erase(t)
p

↪→=
〈µ,µD〉erase(s).

Similarly to the LR case, our refined on-demand strategy is strictly more re-
strictive than ODR as the following example shows.

Example 22 Consider the following OBJ program and its strategy map ϕ:
obj Ex5 is

sorts Nat LNat .
op 0 : -> Nat .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (-2)] .
op from : Nat -> LNat [strat (-1 0)] .
op f : LNat -> Nat [strat (-1 0)] .
op g : Nat -> Nat [strat (-1 0)] .
vars X : Nat .
eq from(X) = cons(X,from(s(X))) .
eq f(X) = 0 .
eq g(0) = 0 .

endo

Consider the TRS underlying this program and the replacement maps µ(g) =
µ(f) = µ(from) = µ(cons) = ∅, µD(g) = µD(f) = µD(from) = {1}, and
µD(cons) = {2}; whose union corresponds to strategy map ϕ. The expression
t = g(f(from(0))) has a terminating evaluation sequence using]→ :

〈gnil|(-1 0)(fnil|(−1 0)(fromnil|(−1 0)(0nil|nil))), Λ〉
]→ϕ 〈g(−1)|(0)(fnil|(−1 0)(fromnil|(−1 0)(0nil|nil))), Λ〉
]→ϕ 〈g(−1)|(0)(fnil|(-1 0)(fromnil|(−1 0)(0nil|nil))), 1〉
]→ϕ 〈g(−1)|(0)(f(−1)|(0)(fromnil|(−1 0)(0nil|nil))), 1〉
]→ϕ 〈g(−1)|(0)(0nil|nil), 1〉
]→ϕ 〈g(−1)|(0)(0nil|nil), Λ〉
]→ϕ 〈0nil|nil, Λ〉

26

However, even if ODR is able to reproduce the previous terminating reduction
sequence:

g(f(from(0))) ↪→〈µ,µD〉 g(0) ↪→〈µ,µD〉 0

the following non-terminating reduction sequence is also possible:
g(f(from(0))) ↪→〈µ,µD〉 g(f(cons(0,from(s(0))))) ↪→〈µ,µD〉 · · ·

Note that Λ is a positive position which is a eventual redex of g(0) and positions
1.1, 1.1.2, . . . are demanded by the lhs g(0).

Moreover, the condition in Theorem 5 that ϕ be an E-strategy map such that
µϕN(c) = ∅ for c ∈ C cannot be dropped.

Example 23 Consider the following OBJ program and its strategy map ϕ:
obj Ex6 is

sorts Nat LNat .
op 0 : -> Nat .
op s : Nat -> Nat .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (2)] .
op from : Nat -> LNat [strat (-1 0)] .
op f : LNat -> Nat [strat (-1 0)] .
var X : Nat . var Z : LNat .
eq from(X) = cons(X,from(s(X))) .
eq f(cons(X,Z)) = 0 .

endo

Consider the TRS underlying this program and the replacement maps µ(f) =
µ(from) = ∅, µ(cons) = {2}, and µD(f) = µD(from) = {1}, whose union
corresponds to strategy map ϕ. Now the term t = f(from(0)) has a unique
normalizing evaluation sequence under ODR:

f(from(0))) ↪→〈µ,µD〉 f(cons(0,from(s(0)))) ↪→〈µ,µD〉 0

Position 1.2 of f(cons(0,from(s(0)))) is under a variable of lhs f(cons(X,Z))
and the subterm from(s(0)) is not further evaluated. However, the evaluation
sequence for]→ is non-terminating:

〈fnil|(-1 0)(fromnil|(−1 0)(0nil|nil)), Λ〉
]→ϕ 〈f(−1)|(0)(fromnil|(−1 0)(0nil|nil)), Λ〉
]→ϕ 〈f(−1)|(0)(fromnil|(-1 0)(0nil|nil)), 1〉
]→ϕ 〈f(−1)|(0)(from(−1)|(0)(0nil|nil)), 1〉
]→ϕ 〈f(−1)|(0)(consnil|(2)(0nil|nil, from(−1)|(0)(snil|nil(0nil|nil)))), 1〉
]→ϕ 〈f(−1)|(0)(cons(2)|nil(0nil|nil, from(−1)|(0)(snil|nil(0nil|nil)))), 1.2〉
]→ϕ · · ·

Note that since ϕ(cons) = (2), each term from(w) has a non-terminating
reduction sequence.

27

In Theorem 5, the condition of R being a CS cannot be dropped. An argument
similar to the one in Example 23 can be used if we consider a defined symbol in
a non-root position of a lhs whose strategy map records a positive argument.

In the following section, we consider other aspects of the definition of a
suitable on-demand evaluation strategy and formulate methods for proving ter-
mination of our on-demand strategy.

6 Proving termination of programs with nega-
tive annotations by transformation

In [Luc02b] a method for proving termination of LR as termination of context-
sensitive rewriting (CSR [Luc98]) is described. In contrast to LR, context-
sensitive rewriting forbids every reduction on the arguments not included into
µ(f) for a given function call f(t1, . . . , tk). A TRS R is µ-terminating if the
context-sensitive rewrite relation associated to R and µ is terminating. The
idea of the aforementioned method is simple: given a TRS R and a replace-
ment map µ, a new TRS R′ and replacement map µ′ is obtained in such a
way that µ′-termination of R′ implies LR(µ)-termination of R. Fortunately,
there are a number of different techniques for proving termination of CSR (see
[GM03, Luc02c] for recent surveys) which provide a formal framework for prov-
ing termination of lazy rewriting. A simple modification of such transformation
provides a sound technique for proving ϕ-termination of TRSs for arbitrary
strategy annotations ϕ by taking into account that only those symbols which
have associated a negative index may be activated by demandedness. Here, as
in [Luc01a, Luc02b], by ϕ-termination of a TRS R we mean the absence of
infinite]→ϕ -sequences of terms starting from 〈ϕ(t), Λ〉.

As for the transformation in [Luc02b], the idea is to encode the demand-
edness information expressed by the rules of the TRS R together with the
(negative) annotations of the E-strategy map ϕ as new symbols and rules (to-
gether with the appropriate modification/extension of ϕ) in such a way that
ϕ-termination is preserved in the new TRS and E-strategy map, but the neg-
ative indices are finally suppressed (by removing from the lhs of the rules the
parts that introduce on-demand computations). We iterate on these basic trans-
formation steps until obtaining a canonical E-strategy map. In this case, we can
stop the transformation and use the existing methods for proving termination of
CSR. Let ϕ be an arbitrary E-strategy map. Given l → r ∈ R and p ∈ Pos(l),
we let

I(l, p) = {i > 0 | p.i ∈ PosF (l) and − i ∈ ϕ(root(l|p))}
Assume that I(l, p) = {i1, . . . , in} for some n > 0 (i.e., I(l, p) 6= ∅) and let
f = root(l|p). Then, R¦ = (F¦, R¦) and ϕ¦ are as follows: F¦ = F ∪ {fj | 1 ≤
j ≤ n}, where each fj is a new symbol of arity ar(fj) = ar(f), and

R¦ = R− {l → r} ∪ {l′j → r, l[x]p.ij → l′j [x]p.ij | 1 ≤ j ≤ n}

28

where l′j = l[fj(l|p.1, . . . , l|p.k)]p if ar(f) = k, and x is a new variable. We let
ϕ¦(fj) = (ij 0) for 1 ≤ j ≤ n and f ∈ D, ϕ¦(fj) = (ij) for 1 ≤ j ≤ n and f ∈ C,
and ϕ¦(g) = ϕ(g) for all g ∈ F .(g 6= f). Moreover, we let ϕ¦(f) = ϕN(f) if
µcan
R¦ (f) ⊆ µϕN(f), and ϕ¦(f) = ϕ(f) otherwise. Informally, if p is a position in

a lhs l with a symbol f with a negative annotation −i and position p.i is a non-
variable position in l, then we transform the rule l → r into l[x]p → l′[x]p and
l′ → r; where l′ is l with a new symbol f ′ at position p such that the annotation
−i is converted to i in the strategy for f ′ and removed from the strategy for f .

The transformation proceeds in this way (starting from R¦ and µ¦) until
obtaining R\ = (F \, R\) and ϕ\ such that ϕ\ = ϕ\N. If ϕ = ϕN, then R\ = R
and ϕ\ = ϕ. Finally, we can state a sufficient condition for ϕ-termination as
termination of CSR for the transformed TRS.

Theorem 6 (Termination) Let R be a TRS, ϕ be an E-strategy map. If R\

is µϕ\

-terminating, then R is ϕ-terminating.

It is well-known that CSR does not completely capture the ϕ-termination prop-
erty of an OBJ program with only positive strategy annotations (see [Luc01b]).
Thus, the technique proposed in the paper does not completely capture the
ϕ-termination of an OBJ program with on-demand strategy annotations.

In the following, we show how some examples along the paper can be proved
terminating by this technique.

Example 24 Consider the TRS R associated to Example 5 but changing
ϕ(cons) = (1 − 2). Then, R\ is:

2nd(cons’(x,cons(y,z))) → y
2nd(cons(x,y)) → 2nd(cons’(x,y))
from(x) → cons(x,from(s(x)))

and ϕ\ is given by ϕ\(2nd) = ϕ\(from) = (1 0), ϕ\(cons) = (1), and ϕ\(cons’) =
(2). The µϕ\

-termination of R\ is proved by using Zantema’s transformation
for proving termination of CSR [Zan97]: the TRS

2nd(cons’(x,cons(y,z))) → y
2nd(cons(x,y)) → 2nd(cons’(x,activate(y)))
from(x) → cons(x,from’(s(x)))
activate(from’(x)) → from(x)
from(x) → from’(x)
activate(x) → x

which is obtained in this way (where activate and from’ are new symbols
introduced by Zantema’s transformation) is terminating8.

Example 25 Consider the TRS R and the E-strategy map ϕ that correspond to
the OBJ program of Example 2. Our transformation returns the original TRS,
i.e., R\ is:

8This can be proven using the CiME 2.0 system [EC96] (available at http://cime.lri.fr).

29

http://cime.lri.fr�

ms./rewrites pi

OnDemandOBJ 25/364
CafeOBJ 30/364
OBJ3 unavailable
Maude unavailable

Table 1: Execution of call pi(square(square(3))).

ms./rewrites msquare eager msquare apt msquare neg

OnDemandOBJ 33/ 715 62/ 1640 0/ 1
40/ 914 78/ 1992 80/ 1992

CafeOBJ 40/ 715 50/ 715 0/ 1
50/ 914 60/ 914 60/ 914

OBJ3 20/ 715 overflow unavailable
30/ 914 overflow unavailable

Maude 0/ 715 0/ 1640 unavailable
0/ 914 3/ 1992 unavailable

Table 2: Execution of terms minus(0,square(square(5))) and
minus(square(square(5)),square(square(3))).

from(x) → cons(x,from(s(x)))
length(nil) → 0
length(cons(x,z)) → s(length’(z))
length’(z) → length(z)

together with the simplified E-strategy ϕ\(s) = ϕ\(cons) = (1), ϕ\(from) = (1 0)
and ϕ\(length) = ϕ\(length’) = (0). The µϕ\

-termination of R can be auto-
matically proved by splitting up the rules of the program into two modules R1

(consisting of the rule for from) and R2 (consisting of the rules for length and
length’). The µϕ\

-termination of R1 can easily be proved by using Zantema’s
transformation (in fact, the proof can be extracted from that of Example 24).
The µϕ\

-termination of R2 is easily proved: in fact, R2 can be proved termi-
nating (regarding standard rewriting) by using a polynomial ordering9. Now,
µϕ\

-termination of R follows by applying the modularity results of [GL02].

7 Experiments

In order to demonstrate the practicality of the on-demand evaluation strategy
proposed in this paper, an interpreter has been implemented in Haskell (using
ghc 5.04.2). The system is called OnDemandOBJ and is publicly available at
http://www.dsic.upv.es/users/elp/soft.html.

Tables 1, 2, and 3 show the runtimes10 and the number of rewrite steps
9CiME 2.0 [EC96] can also be used for achieving this proof.

10The average of 10 executions measured in a Pentium III machine running RedHat 7.2.

30

http://www.dsic.upv.es/users/elp/soft.html�

ms./rewrites quicksort minsort mod mod’ average

OnDemandOBJ 55/1373 87/1649 540/13661 135/3117 70/1399
CafeOBJ 42/ 658 overflow 180/ 3117 175/3117 130/1399

Table 3: Comparison of CafeOBJ and OnDemandOBJ.

of the benchmarks for the different OBJ-family systems (source programs are
included in Appendix B). CafeOBJ11 (we use version 1.4.6) is developed in
Lisp at the Japan Advanced Inst. of Science and Technology (JAIST); OBJ312

(we use version 2.0), also written in Lisp, is maintained by the University of
California at San Diego; Maude13 (we use version 1.0.5) is developed in C++ and
maintained by the University of Illinois at Urbana-Champaign. OBJ3 and Maude
provide only computations with positive annotations whereas CafeOBJ provides
computations with negative annotations as well, using the on-demand evaluation
of [NO01, OF00]. OnDemandOBJ computes with negative annotations using the
on-demand evaluation strategy provided in this paper. Note that CafeOBJ and
OBJ3 implement sharing of variables whereas Maude and OnDemandOBJ do not.
It is worth noting that the mark overflow in Tables 2 and 3 indicates that the
execution raised a memory overflow and normal form was not achieved whereas
the mark unavailable in Tables 1 and 2 indicates that the program can not be
executed in such OBJ implementation. Note that since Maude is implemented
in C++, typical execution times are nearly 0 milliseconds.

The benchmark pi encodes the well-known infinite serie expansion to approx-
imate number π of Example 3. Table 1 compares the evaluation of expression
pi(square(square(3))) using existing OBJ implementations. It witnesses that
negative annotations are actually useful in practice and that the implementation
of the on-demand evaluation strategy in other systems is quite promising.

On the other hand, Table 2 illustrates the interest of using negative annota-
tions to improve the behavior of programs: the benchmark msquare eager en-
codes the functions square, minus, times, and plus over natural numbers using
only positive annotations. Every k-ary symbol f is given a strategy (1 2 · · · k 0)
(this corresponds to default strategies in Maude). Note that the program is ter-
minating as a TRS (i.e., without any annotation). The benchmark msquare apt
is similar to msquare eager, but canonical positive strategies are provided: the
i-th argument of a symbol f is annotated if there is an occurrence of f in the
left-hand side of a rule having a non-variable i-th argument; otherwise, the ar-
gument is not annotated (see [AL02]). The benchmark msquare neg is similar
to msquare apt, though canonical arbitrary strategies are provided: now (from
left-to-right), the i-th argument of a defined symbol f is annotated if all occur-
rences of f in the left-hand side of the rules contain a non-variable i-th argument;
if all occurrences of f in the left-hand side of the rules have a variable i-th ar-
gument, then the argument is not annotated; in any other case, annotation −i

11Available at http://www.ldl.jaist.ac.jp/Research/CafeOBJ/system.html.
12Available at http://www.kindsoftware.com/products/opensource/obj3/OBJ3/.
13Available at http://maude.cs.uiuc.edu/.

31

http://www.ldl.jaist.ac.jp/Research/CafeOBJ/system.html�
http://www.kindsoftware.com/products/opensource/obj3/OBJ3/�
http://maude.cs.uiuc.edu/�

is given to f (see [AL02]). Then, for instance, program msquare neg runs in
less time and requires a smaller number of rewrite steps than msquare eager
or msquare apt, which do not include negative annotations.

Finally, Table 3 compares the execution of typical functional programs with
canonical arbitrary strategies in OnDemandOBJ and in CafeOBJ, and demon-
strates that there are clear advantages in using our implementation of the on-
demand evaluation. We have used benchmarks quicksort, minsort, mod, and
average which are borrowed from [AG01], and use canonical arbitrary strate-
gies. Benchmark mod’ is similar to mod but extra annotations are provided in
order to avoid differences due to sharing. These experimental results, together
with the OBJ source programs, are available at

http://www.dsic.upv.es/users/elp/ondemandOBJ/experiments

8 Conclusions

We have provided a suitable extension of the positive E-evaluation strategy of
OBJ-like languages to general (positive as well as negative) annotations. Such
an extension is conservative, i.e., programs which only use positive strategy
annotations and that are executed under our strategy behave exactly as if they
were executed under the standard OBJ evaluation strategy (Theorems 1, 2, and
5). The main contributions of the paper are:

(a) the definition of a suitable and well-defined approach to demandedness via
E-strategies (see Examples 2, 6, 14, and 19 for motivation regarding the
undecidability of the reduction relation or the inadequacy of the model in
previous proposals),

(b) the demonstration of the sound computational properties associated to
such a new on-demand strategy (Theorems 3 and 4),

(c) the definition of techniques for analyzing computational properties such
as termination under annotated strategies (Theorem 6),

(d) the experimental results of Section 7 demonstrate that our approach is
better suited for implementation.

We also show that our on-demand strategy improves the two most important
evaluation strategies dealing with on-demand annotations:

• lazy rewriting (LR) [FKW00], a popular, demand-driven technique to per-
form lazy functional computations which inspired the development of on-
demand strategies in OBJ, and

• on-demand rewriting (ODR) [Luc01a], which extends the context sensitive
rewriting of [Luc98] by also considering “negative annotations” and which
does not directly apply to OBJ and is not comparable to LR.

32

http://www.dsic.upv.es/users/elp/ondemandOBJ/experiments�

As future work, we plan to extend the program transformation developed
in [AEL02], which provides completeness of the evaluation strategy for positive
strategy annotations, to the case of on-demand strategy annotations.

References

[AEGL02] M. Alpuente, S. Escobar, B. Gramlich, and S. Lucas. Improving
on-demand strategy annotations. In Matthias Baaz and Andrei
Voronkov, editors, Proc. 9th Int. Conf. on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR’02), volume 2514 of
Lecture Notes in Computer Science, pages 1–18, Tbilisi, Georgia,
2002. Springer-Verlag, Berlin.

[AEL02] M. Alpuente, S. Escobar, and S. Lucas. Correct and complete (posi-
tive) strategy annotations for OBJ. In F. Gadducci, editor, Proc. of
the 4th International Workshop on Rewriting Logic and its Appli-
cations, WRLA 2002, volume 71 of Electronic Notes in Theoretical
Computer Science. Elsevier Sciences Publisher, 2002.

[AFJV97] M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Specialization of
Lazy Functional Logic Programs. In Proc. of the ACM SIGPLAN
Conf. on Partial Evaluation and Semantics-Based Program Manip-
ulation, PEPM’97, volume 32, number 12 of ACM Sigplan Notices,
pages 151–162. ACM Press, New York, 1997.

[AG01] T. Arts and J. Giesl. A collection of examples for termination of
term rewriting using dependency pairs. Technical report, AIB-2001-
09, RWTH Aachen, Germany, 2001.

[AL02] S. Antoy and S. Lucas. Demandness in rewriting and narrow-
ing. In M. Comini and M. Falaschi, editors, Proc. of the 11th
Int’l Workshop on Functional and (Constraint) Logic Programming
WFLP’02, volume 76 of Electronic Notes in Theoretical Computer
Science. Elsevier Sciences Publisher, 2002.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

[CELM96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of
Maude. In J. Meseguer, editor, Proc. of the 1st International Work-
shop on Rewriting Logic and its Applications, RWLW 96, volume 4
of Electronic Notes in Theoretical Computer Science, pages 65–89.
Elsevier Sciences Publisher, 1996.

[EC96] C. Marché . RTA 1996: 416-419 E. Contejean. CiME: Completion
Modulo E. In H. Ganzinger, editor, Proc. of 7th International Con-
ference on Rewriting Techniques and Applications, RTA’96, vol-

33

ume 1103 of Lecture Notes in Computer Science, pages 416–419.
Springer-Verlag, Berlin, 1996.

[Eke00] S. Eker. Term rewriting with operator evaluation strategies. In
C. Kirchner and H. Kirchner, editors, Proc. of the 2nd Interna-
tional Workshop on Rewriting Logic and its Applications, WRLA
98, volume 15 of Electronic Notes in Theoretical Computer Science.
Elsevier Sciences Publisher, 2000.

[FGJM85] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Prin-
ciples of OBJ2. In Proc. of 12th Annual ACM Symp. on Principles
of Programming Languages (POPL’85), pages 52–66. ACM Press,
New York, 1985.

[FKW00] W. Fokkink, J. Kamperman, and P. Walters. Lazy rewriting on
eager machinery. ACM Transactions on Programming Languages
and Systems, 22(1):45–86, 2000.

[FN97] K. Futatsugi and A. Nakagawa. An overview of CAFE specification
environment – an algebraic approach for creating, verifying, and
maintaining formal specification over networks –. In 1st Interna-
tional Conference on Formal Engineering Methods, 1997.

[GL02] B. Gramlich and S. Lucas. Modular termination of context-sensitive
rewriting. In C. Kirchner, editor, Proc. of 4th International ACM
SIGPLAN Conference on Principles and Practice of Declarative
Programming, PPDP’02. ACM Press, New York, 2002.

[GM03] Jürgen Giesl and Aart Middeldorp. Transformation techniques for
context-sensitive rewrite systems. Journal of Functional Program-
ming, 2003. To appear.

[GWM+00] J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P.
Jouannaud. Introducing OBJ. In J. Goguen and G. Malcolm,
editors, Software Engineering with OBJ: algebraic specification in
action. Kluwer Academic Publishers, Dordrecht, The Netherlands,
2000.

[Luc98] S. Lucas. Context-sensitive computations in functional and func-
tional logic programs. Journal of Functional and Logic Program-
ming, 1998(1):1–61, 1998.

[Luc01a] S. Lucas. Termination of on-demand rewriting and termination
of obj programs. In Proc. of 3rd International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming,
PPDP’01, pages 82–93. ACM Press, New York, 2001.

[Luc01b] S. Lucas. Termination of Rewriting With Strategy Annotations. In
R. Nieuwenhuis and A. Voronkov, editors, Proc. of 8th International

34

Conference on Logic for Programming, Artificial Intelligence and
Reasoning, LPAR’01, volume 2250 of Lecture Notes in Artificial
Intelligence, pages 669–684. Springer-Verlag, Berlin, 2001.

[Luc02a] S. Lucas. Context-sensitive rewriting strategies. Information and
Computation, 178(1):294–343, 2002.

[Luc02b] S. Lucas. Lazy rewriting and context-sensitive rewriting. In
M. Hanus, editor, Proc. of the 10th Int’l Workshop on Functional
and (Constraint) Logic Programming WFLP’01, volume 64 of Elec-
tronic Notes in Theoretical Computer Science. Elsevier Sciences
Publisher, 2002.

[Luc02c] S. Lucas. Termination of (Canonical) Context-Sensitive Rewrit-
ing. In S. Tison, editor, Proc. of 13th International Conference
on Rewriting Techniques and Applications, RTA’02, volume 2378
of Lecture Notes in Computer Science, pages 296–310. Springer-
Verlag, Berlin, 2002.

[MR92] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Program-
ming with Functions and Predicates: The language Babel. Journal
of Logic Programming, 12(3):191–224, 1992.

[Nag99] T. Nagaya. Reduction Strategies for Term Rewriting Systems. PhD
thesis, School of Information Science, Japan Advanced Institute of
Science and Technology, March 1999.

[NO01] M. Nakamura and K. Ogata. The evaluation strategy for head
normal form with and without on-demand flags. In K. Futatsugi,
editor, Proc. of the 3rd International Workshop on Rewriting Logic
and its Applications, WRLA 2000, volume 36 of Electronic Notes
in Theoretical Computer Science. Elsevier Sciences Publisher, 2001.

[OF00] K. Ogata and K. Futatsugi. Operational semantics of rewriting with
the on-demand evaluation strategy. In Proc. of 2000 International
Symposium on Applied Computing, SAC’00, pages 756–763. ACM
Press, New York, 2000.

[TeR03] TeReSe, editor. Term Rewriting Systems. Cambridge University
Press, Cambridge, 2003.

[Zan97] H. Zantema. Termination of context-sensitive rewriting. In Proc. of
8th International Conference on Rewriting Techniques and Applica-
tions, RTA’97, volume 1232 of Lecture Notes in Computer Science,
pages 172–186. Springer-Verlag, Berlin, 1997.

35

A Proofs

A.1 Proofs of Section 4.1

Theorem 1 Let R be a TRS and ϕ be a positive E-strategy map. Let t, s ∈
T (F]

ϕ,X]
ϕ) and p ∈ Pos(t). Then, 〈t, p〉]→ϕ 〈s, q〉 if and only if

〈positive(t), p〉 N→ϕ〈positive(s), q〉.

Proof. Straightforward according to Definition 1. 2

We introduce some auxiliary notation. Let ϕ1, ϕ2 be two E-strategy maps such
that ϕ1 v ϕ2 and t ∈ T (F]

ϕ2
,X]

ϕ2
). We define <t>ϕ1 = t′ ∈ T (F]

ϕ1
,X]

ϕ1
) such

that for all p ∈ Pos(t), root(t|p) = f]
L1|L2

implies that root(t′|p) = f]
L′1|L′2 and

that L′1 and L′2 are the maximal sequences such that L′1 v L1, and L′2 v L2.

Lemma 1 Let R be a TRS and ϕ be an E-strategy map such that ϕN ∈ CMR.
If t ∈ T (F]

ϕ,X]
ϕ), then ODR(t) = ∅.

Proof. Immediate. From ϕN ∈ CMR, we get DPR(erase(t)) ⊆ PathsP (<t>ϕN) ⊆
PathsP (t). Thus, ODR(t) = ODR(<t>ϕN) = ∅. 2

Theorem 2 Let R be a TRS and ϕ be an E-strategy map such that ϕN ∈ CMR.
Let t, s ∈ T (F]

ϕ,X]
ϕ) and p ∈ Pos(t). Then, 〈t, p〉]→ϕ 〈s, q〉 if and only if

〈positive(t), p〉 N→ϕN〈positive(s), q〉.

Proof. Immediate, since the term positive(t) does not contain negative indices
and, hence, by Lemma 1, ODR(t) = ∅. 2

Theorem 3 Let R = (F , R) = (C] D, R) be a left-linear CS, ϕ ∈ CMR and
ϕ(f) end with 0 for all f ∈ D. Let t ∈ T (F ,X). If s ∈ evalϕ(t), then s is a
head-normal form of t.

Proof. First, note that it is not possible to have that root(s) = fL|nil for f ∈ F
since non-evaluable flags are raised only when a position is demanded and only
for those symbols occurring at positions between the root and the considered
demanded position (excluding both).

We prove the claim by structural induction on s. If s ∈ C or s ∈ X , we
are trivially done. Consider s = f ∈ D, with ar(f) = 0. By assumption, ϕ(f)
ends with 0, thus the last rewriting step was 〈fnil|(0), Λ〉]→ϕ 〈fnil|nil, Λ〉. The
only case when this can happen is when erase(fnil|(0)) = f is not a redex and
ODR(fnil|(0)) = ∅. But this case can only occur if there is no l ∈ L(R).root(l) =
f . Hence, s is a head-normal form.

36

For the induction case, we omit the case root(s) ∈ C which is trivial. Con-
sider root(s) = f ∈ D. By assumption, ϕ(f) ends with 0, thus, there are
terms t′, s′ ∈ T (F]

ϕ,X]
ϕ) such that the last rewriting step was 〈t′, Λ〉]→ϕ 〈s′, Λ〉,

s = erase(s′), root(t′) = fL|(0) and s′ = fL|nil(t′|1, . . . , t′|ar(f)). This can hap-
pen only when erase(t′) is not a redex and ODR(t′) = ∅.

If erase(t′) is not a redex, then s is also not a redex and, by left-linearity,
@l ∈ L(R) and σ ∈ Subst(T (F ,X)) such that s = σ(l), i.e. Pos 6=(s, l) 6= ∅
for all l ∈ L(R). Moreover, if ADPR(s) = ∅, then s is a head-normal form
because either there is no l ∈ L(R).root(s) = root(l) (and then there is no rule
which can be applied to s) or there is p ∈ Pos(s) such that for all l ∈ L(R),
p ∈ Pos6=(s, l) and root(s|p) 6∈ D (and then, by the CS property, we know
that the symbol at this position will never change by further reductions on the
term). On the contrary, if there is p ∈ DPR(s), then there exists l ∈ L(R)
such that p ∈ DPl(s). In this case, since ODR(t′) = ∅, either p 6∈ PathsA(t′)
or p ∈ PathsP (t′). But, since ϕ ∈ CMR, all symbols in l at positions which
are above p have an index (−i or i) in ϕ; thus, we have p ∈ PathsA(t′) and
p ∈ PathsP (t′). Then, since all indices from Λ down to p are positive, position
p was previously reduced and now, root(t′|p) = gL′|nil for g ∈ F ∪ X . Thus,
by induction hypothesis, s|p is a head-normal form and, by CS property, the
symbol g at this position will never disappear. Hence, s is also a head-normal
form. 2

A.2 Proofs of Section 5.1

Lemma 2 Let R be a left-linear TRS and ϕ be an E-strategy map. Let t ∈
T (F]

ϕ,X]
ϕ). If ODR(t) = {p}, then ∃l ∈ L(R) such that l matches modulo

laziness labelµϕN (erase(t)); root(erase(t)|p) 6= root(l|p) 6∈ X ; for all p′ : Λ ≤ p′ <

p, root(erase(t)|p′) = root(l|p′); and at least one position p′ : Λ < p′ ≤ p is
declared essential.

Proof. By definition, there exists l ∈ L(R) such that p ∈ Pos6=(erase(t), l) and
root(erase(t)|p) 6= root(l|p) 6∈ X . By minimality, for all p′ : Λ ≤ p′ < p,
root(erase(t)|p′) = root(l|p′). Moreover, we have that ODR(erase(t)) ∩
PathsP (t) = ∅. That is, for all q ∈ DPR(erase(t)), q 6∈ PathsP (t) and then,
there is q′ ≤ q such that q′ ∈ PathsA(t), root(labelµϕN (erase(t))|q′) = f ` and
for all q′′ : Λ ≤ q′′ < q′, symbol root(labelµϕN (erase(t))|q′′) is marked as eager.
Hence, the conclusion follows and l matches modulo laziness t. 2

Lemma 3 Let R be a left-linear TRS and ϕ be an E-strategy map. If t, l′, r′ ∈
T (F]

ϕ,X]
ϕ) and l → r ∈ R such that t = σ(l′), erase(l′) = l, and r′ = σ(ϕ(r)),

then l matches erase(t) and, let tϕ = labelµϕN (erase(t)), there exists θ for LR
such that labelµϕN (erase(r′)) = θ(labelµϕN (r)).

Proof. Note that all variables of l′ have the same labelling, i.e. Var(l′) =
{xnil|nil | x ∈ Var(l)}. Note also that, if t = σ(l′), then l matches erase(t)

37

and there exists θ for LR such that erase(σ(x′)) = erase(θ(x′′)) for erase(x′) =
erase(x′′) = x ∈ Var(l). Finally, θ(labelµϕN (r)) = labelµϕN (erase(σ(r))), i.e.
labelµϕN (erase(r′)) = θ(labelµϕN (r)). 2

Theorem 4 Let R be a left-linear TRS and ϕ be an E-strategy map. Let t ∈
T (F]

ϕ,X]
ϕ), p ∈ Pos(t) and µ = µϕN . If 〈t, p〉]→ϕ 〈s, q〉 and p ∈ Act(lazyp

ϕ(t)),

then q ∈ Act(lazyq
ϕ(s)) and lazyp

ϕ(t) LR−→∗
µ s′ for s′ ∈ T (FL,XL) such that

lazyq
ϕ(s) ≤lazy s′.

Proof. We consider the different cases of Definition 3 separately.

1. If t|p = fL|nil(t1, . . . , tk), s = t and p = q.i for some i, then lazyq
ϕ(s) ≤lazy

lazyp
ϕ(t) and lazyp

ϕ(t) LR−→=
µ lazyp

ϕ(t). Note that q ∈ Act(lazyq
ϕ(s)) since

p = q.i ∈ Act(lazyp
ϕ(t)).

2. If t|p = fL1|i:L2(t1, . . . , tk) with i > 0, s = t[fL1@i|L2(t1, . . . , tk)]p and
q = p.i, then lazyp

ϕ(t) = lazyq
ϕ(s) and, since i ∈ µ(f), q ∈ Act(lazyq

ϕ(s)),

we get lazyp
ϕ(t) LR−→=

µ lazyq
ϕ(s).

3. If t|p = fL1|−i:L2(t1, . . . , tk) with i > 0, s = t[fL1@−i|L2(t1, . . . , tk)]p and
q = p, then lazyp

ϕ(t) = lazyq
ϕ(s), q ∈ Act(lazyq

ϕ(s)) and

lazyp
ϕ(t) LR−→=

µ lazyq
ϕ(s).

4. If t|p = fL1|0:L2(t1, . . . , tk) = σ(l′), erase(l′) = l, s = t[σ(ϕ(r))]p for some
l → r ∈ R and substitution σ, and q = p, then by Lemma 3, there exists
θ for LR such that lazyp

ϕ(t) R→µ lazyp
ϕ(t)[θ(labelµ(r))]p. By Lemma 3, we

also have that lazyp
ϕ(t)[θ(labelµ(r))]p = lazyp

ϕ(t)[labelµ(erase(σ(ϕ(r))))]p.
Since t|p contains no overlined symbol and p ∈ Act(lazyp

ϕ(t)), then
labelµ(erase(σ(ϕ(r)))) = lazyp

ϕ(σ(ϕ(r))), and we finally get
lazyp

ϕ(t)[θ(labelµ(r))]p = lazyp
ϕ(t)[lazyp

ϕ(σ(ϕ(r)))]p = lazyq
ϕ(s).

5. If t|p = fL1|0:L2(t1, . . . , tk), erase(t|p) is not a redex, ODR(t|p) = ∅,
s = t[fL1|L2(t1, . . . , tk)]p, and q = p, then lazyp

ϕ(t) = lazyq
ϕ(s), q ∈

Act(lazyq
ϕ(s)) and lazyp

ϕ(t) LR−→=
µ lazyq

ϕ(s).

6. If t|p = fL1|0:L2(t1, . . . , tk), erase(t|p) is not a redex, ODR(t|p) = {p′},
s = t[mark(t|p, p′)]p, and q = p.p′, then, for all p′′ : p ≤ p′′ ≤ p′,
root(lazyq

ϕ(s)|p′′) = fe and q ∈ Act(lazyq
ϕ(s)). Thus, it is not difficult

to see that, since root(erase(t)|p′′) = root(l|p′′) for all p′′ : Λ ≤ p′′ < p′,
appropriate activation steps of lazy rewriting are available (by successive
applications of Lemma 2) in order to activate the necessary symbols from
the root down to q, i.e. we obtain lazyp

ϕ(t) A−→∗ lazyq
ϕ(s).

7. If t|p = fL1|L2
(t1, . . . , tk), s = t[fL1|L2(t1, . . . , tk)]p, and p = q.i for some i,

then, since lazyq
ϕ(s) ≤lazy lazyp

ϕ(t), we have lazyp
ϕ(t) LR−→=

µ lazyp
ϕ(t). Note

that q ∈ Act(lazyq
ϕ(t)) since q.i ∈ Act(lazyp

ϕ(t)). 2

38

A.3 Proofs of Section 5.2

Given a term t ∈ T (F]
ϕ,X]

ϕ) and a position p ∈ PosA(t), we say p is a stop
position if there is no sequence 〈t, p〉]→∗

ϕ 〈t′, q〉 such that p ≤ q, erase(t) =
erase(t′), and erase(t′|q) is a redex.

Lemma 4 Let R be a TRS and ϕ be an E-strategy map such that µϕN(c) = ∅
for c ∈ C. Let t ∈ T (F]

ϕ,X]
ϕ) and p ∈ PosA(t). If root(erase(t|p)) ∈ C, then p

is a stop position.

Proof. Immediate since µϕN(c) = ∅ for root(erase(t|p)) = c and then it has no
effect, even if annotation 0 is included into ϕ(c). 2

Lemma 5 Let R be a left-linear CS and ϕ be an E-strategy map such that
µϕN(c) = ∅ for c ∈ C. Let t ∈ T (F]

ϕ,X]
ϕ) and p ∈ PosA(t). If 〈t, p〉 is

consistent, then either p ∈ PosP (t) or ∃q ∈ PosP (t) s.t. q < p and either
ODR(t|q) 6= ∅ or, otherwise, if erase(t|q) is a redex, then ∀q < w ≤ p, w is a
stop position.

Proof. By induction on the length n of the evaluation sequence
〈ϕ(s), Λ〉]→n

ϕ 〈t, p〉 for s ∈ T (F ,X).

• (n = 0) It is immediate to see that p = Λ and Λ ∈ PosP (t).

• (n > 0) Let us consider 〈ϕ(s), Λ〉]→n−1
ϕ 〈t′, p′〉]→ϕ 〈t, p〉. The induction hy-

pothesis is: p′ ∈ PosP (t′) or p′ ∈ PosA(t′)−PosP (t′) and ∃q′ ∈ PosP (t′)
s.t. q′ < p′ and either ODR(t′|q′) 6= ∅ or, otherwise, if erase(t′|q′) is a
redex, then for all q′ s.t. q′ < w ≤ p′, w is a stop position. We consider
the different cases of Definition 3 separately:

1. Let t′|p′ = fL|nil(t1, . . . , tk), t = t′ and p′ = p.i for some i. If
p′ ∈ PosP (t′), then p ∈ PosP (t). If p′ ∈ PosA(t′) − PosP (t′) and
q′ = p, then p ∈ PosP (t). If p′ ∈ PosA(t′) − PosP (t′), q′ < p, and
ODR(t|q′) 6= ∅, then the conclusion follows since no symbol occur-
ring above or at position p′ has been changed. If p′ ∈ PosA(t′) −
PosP (t′), q′ < p, and ODR(t|q′) = ∅, then the conclusion follows by
induction since p is also a stop position.

2. Let t′|p′ = fL1|i:L2(t1, . . . , tk), i > 0, t = t′[fL1@i|L2(t1, . . . , tk)]p′ and
p = p′.i. If p′ ∈ PosP (t′), then p ∈ PosP (t). If p′ ∈ PosA(t′) −
PosP (t′), q′ < p, and ODR(t′|q′) 6= ∅, then the conclusion follows
since no symbol occurring above or at position p has been changed.
If p′ ∈ PosA(t′)− PosP (t′), q′ < p, ODR(t′|q′) = ∅, and erase(t′|q′)
is a redex, then p is a stop position if p′ is.

39

3. Let t′|p′ = fL1|−i:L2(t1, . . . , tk), i > 0, t = t′[fL1@−i|L2(t1, . . . , tk)]p′
and p = p′. This case is straightforward since the symbols above and
at position p′ are unchanged.

4. Let t′|p′ = fL1|0:L2(t1, . . . , tk) = σ(l′), erase(l′) = l, t = t′[σ(ϕ(r))]p′
for some l → r ∈ R and substitution σ, and p = p′. If p′ ∈ PosP (t′),
then p ∈ PosP (t). Otherwise, p′ ∈ PosA(t′) − PosP (t′) and q′ < p.
If ODR(t|q′) 6= ∅ or ODR(t|q′) = ∅ and erase(t|q′) is not a redex,
then the conclusion follows. Otherwise, erase(t|q′) is a redex.
Here, note that it is impossible that ODR(t′|q′) = ∅ because in
that case, either erase(t′|q′) would not be a redex and, since R is a
left-linear CS, it is impossible that erase(t|q′) becomes a redex; or
erase(t′|q′) would be a redex and p′ a stop position, but, then, no
reduction could be performed at position p′. Thus, ODR(t′|q′) 6= ∅,
ODR(t|q′) = ∅, and erase(t|q′) is a redex. Now, since R is a CS, for
all q′ s.t. q′ < w ≤ p, root(erase(t|w)) ∈ C and, by Lemma 4, w is a
stop position.

5. Let t′|p′ = fL1|0:L2(t1, . . . , tk), erase(t′|p′) is not a redex, ODR(t′|p′) =
∅, t = t′[fL1|L2(t1, . . . , tk)]p′ , and p = p′. Then, it is straightforward
(see Case 3).

6. Let t′|p′ = fL1|0:L2(t1, . . . , tk), erase(t′|p′) is not a redex, ODR(t′|p′) =
{p′′}, t = t′[mark(t′|p′ , p′′)]p′ , and p = p′.p′′. If p′ ∈ PosP (t′),
then p′ < p, ODR(t|p′) 6= ∅, and the conclusion follows. If p′ ∈
PosA(t′) − PosP (t′), q′ < p, and ODR(t′|q′) 6= ∅, then the con-
clusion follows since no symbol above p has been changed. If p′ ∈
PosA(t′) − PosP (t′), q′ < p, ODR(t′|q′) = ∅, and erase(t′|q′) is a
redex, then p is a stop position if p′ is.

7. Let t′|p′ = fL1|L2
(t1, . . . , tk), t = t′[fL1|L2(t1, . . . , tk)]p′ and p′ = p.i

for some i. This case is similar to case 1 above. 2

Theorem 5 Let R be a left-linear CS and ϕ be an E-strategy map such that
µϕN(c) = ∅ for c ∈ C. Let µ, µD ∈ MF be such that µ = µϕN and µ t µD = µϕ.
Let t ∈ T (F]

ϕ,X]
ϕ) and p ∈ PosA(t). If 〈t, p〉]→ϕ 〈s, q〉 and 〈t, p〉 is consistent,

then erase(t)
p

↪→=
〈µ,µD〉erase(s).

Proof. We consider only case 4 of Definition 3 since the other cases only manip-
ulate annotations on symbols or compute the next position q to be considered,
which implies a reflexive on-demand rewriting step. Then, by Lemma 5, case 4
can only occur under the following conditions:

1. If p ∈ PosP (t), then we are trivially done.

2. If p ∈ PosA(t) − PosP (t), ∃q ∈ PosP (t) s.t. q < p and ODR(t|q) 6= ∅,
then it is easy to prove that there exist p1, . . . , pn ∈ Lazy〈µ,µD〉(erase(t)),

40

r1, . . . , rn, t′ ∈ T (F ,X), l → r ∈ R, and a substitution σ such that
t′ = erase(t)[r1]p1 · · · [rn]pn

, t′|q = σ(l) and, for all w ∈ Pos(l) s.t.
sprefixerase(t)|q (w) = sprefixl(w) whenever q.w ≤ p, hence we have that
l|w 6∈ X .

3. Otherwise, p ∈ PosA(t)−PosP (t), and there is no q ∈ PosP (t) s.t. q < p,
ODR(t|q) = ∅, and erase(t|q) is a redex. Note that, by Definition 3, there
exist q ∈ PosP (t) and l ∈ L(R) s.t. q < p and Pos6=(erase(t|q), l) 6= ∅
because, otherwise, it is impossible that position p 6∈ PosP (t) is used
for reduction. Thus, it is easy to prove that there exist p1, . . . , pn ∈
Lazy〈µ,µD〉(erase(t)), r1, . . . , rn, t′ ∈ T (F ,X), l → r ∈ R, and substi-
tution σ such that t′ = erase(t)[r1]p1 · · · [rn]pn

, t′|q = σ(l) and for all
w ∈ Pos(l) s.t. sprefixerase(t)|q (w) = sprefixl(w), whenever q.w ≤ p, we
have that l|w 6∈ X . 2

A.4 Proofs of Section 6

Theorem 6 Let R be a TRS, ϕ be an E-strategy map. If R\ is µϕ\

-terminating,
then R is ϕ-terminating.

Proof. By induction on the number n of transformation steps 〈R0, ϕ0〉, . . . ,
〈Rn, ϕn〉, where R0 = R and ϕ0 = ϕ. If n = 0, then ϕ\ = ϕ\N and, since R
is µϕ\

-terminating, by Theorem 2 of [Luc01b], R is ϕ-terminating. If n > 0,
then, it is not difficult to see that for all t, s ∈ T (F]

ϕ0
,X]

ϕ0
) and p ∈ Pos(t),

if 〈t, p〉]→ϕ0
〈s, q〉, then 〈<t>ϕ1 , p〉]→∗

ϕ1
〈<s>ϕ1 , q〉. Hence, since R1 is ϕn−1-

terminating, R0 is ϕn-terminating. 2

41

B Code of benchmarks

B.1 Program pi

This program encodes the well-known infinite series expansion to approximate

the π number of Example 3:
π
4

= 1 − 1
3

+
1
5
− 1

7
+ · · ·. To make the

program terminating and complete, the strategy for symbol cons must include
the on-demand annotation -2. The remainder strategy annotations are positive
since termination of the whole program is ensured (see termination proof in
Section C). Note that the auxiliary functions plus, times and square for
natural numbers are also included.
obj PI is

sorts Nat LNat Recip LRecip .

op 0 : -> Nat .

op s : Nat -> Nat [strat (1)] .

op posrecip : Nat -> Recip [strat (1)] .

op negrecip : Nat -> Recip [strat (1)] .

op nil : -> LNat .

op cons : Nat LNat -> LNat [strat (1 -2)] .

op rnil : -> LRecip .

op rcons : Recip LRecip -> LRecip [strat (1 2)] .

op from : Nat -> LNat [strat (1 0)] .

op 2ndspos : Nat LNat -> LRecip [strat (1 2 0)] .

op 2ndsneg : Nat LNat -> LRecip [strat (1 2 0)] .

op pi : Nat -> LRecip [strat (1 0)] .

op plus : Nat Nat -> Nat [strat (1 2 0)] .

op times : Nat Nat -> Nat [strat (1 2 0)] .

op square : Nat -> Nat [strat (1 0)] .

vars N X Y : Nat . var Z : LNat .

eq from(X) = cons(X,from(s(X))) .

eq 2ndspos(0,Z) = rnil .

eq 2ndspos(s(N),cons(X,cons(Y,Z))) = rcons(posrecip(Y),2ndsneg(N,Z)) .

eq 2ndsneg(0,Z) = rnil .

eq 2ndsneg(s(N),cons(X,cons(Y,Z))) = rcons(negrecip(Y),2ndspos(N,Z)) .

eq pi(X) = 2ndspos(X,from(0)) .

eq plus(0,Y) = Y .

eq plus(s(X),Y) = s(plus(X,Y)) .

eq times(0,Y) = 0 .

eq times(s(X),Y) = plus(Y,times(X,Y)) .

eq square(X) = times(X,X) .

endo

B.2 Program msquare eager

This program uses functions minus, square, times, and plus over natural num-
bers; they are common to several examples included in the Appendix. The key

42

point of this program is that it is terminating using only positive annotations
and including the indices of all symbols.
obj MINUS-SQUARE is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat [strat (1)] .

op plus : Nat Nat -> Nat [strat (1 2 0)] .

op times : Nat Nat -> Nat [strat (1 2 0)] .

op square : Nat -> Nat [strat (1 0)] .

op minus : Nat Nat -> Nat [strat (1 2 0)] .

vars M N : Nat .

eq plus(0,N) = N .

eq plus(s(M),N) = s(plus(M,N)) .

eq times(0,N) = 0 .

eq times(s(M),N) = plus(N,times(M,N)) .

eq square(N) = times(N,N) .

eq minus(0,N) = 0 .

eq minus(s(M),0) = s(M) .

eq minus(s(M),s(N)) = minus(M,N) .

endo

B.3 Program msquare apt

This program is identical to msquare eager but only the annotations which are
necessary to make the program complete are included, i.e. we use only canonical
positive strategies.
obj MINUS-SQUARE is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat [strat (1)] .

op plus : Nat Nat -> Nat [strat (1 0)] .

op times : Nat Nat -> Nat [strat (1 0)] .

op square : Nat -> Nat [strat (0)] .

op minus : Nat Nat -> Nat [strat (1 2 0)] .

vars M N : Nat .

eq plus(0,N) = N .

eq plus(s(M),N) = s(plus(M,N)) .

eq times(0,N) = 0 .

eq times(s(M),N) = plus(N,times(M,N)) .

eq square(N) = times(N,N) .

eq minus(0,N) = 0 .

eq minus(s(M),0) = s(M) .

eq minus(s(M),s(N)) = minus(M,N) .

endo

43

B.4 Program msquare neg

This program is identical to msquare apt but negative annotations are included,
i.e. we consider canonical arbitrary strategies.
obj MINUS-SQUARE is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat [strat (1)] .

op plus : Nat Nat -> Nat [strat (1 0)] .

op times : Nat Nat -> Nat [strat (1 0)] .

op square : Nat -> Nat [strat (0)] .

op minus : Nat Nat -> Nat [strat (1 -2 0)] .

vars M N : Nat .

eq plus(0,N) = N .

eq plus(s(M),N) = s(plus(M,N)) .

eq times(0,N) = 0 .

eq times(s(M),N) = plus(N,times(M,N)) .

eq square(N) = times(N,N) .

eq minus(0,N) = 0 .

eq minus(s(M),0) = s(M) .

eq minus(s(M),s(N)) = minus(M,N) .

endo

B.5 Program quicksort

This program is borrowed from Example 3.11 of [AG01]. Note that auxiliary
functions from and take for constructing lists are included, as well as two pred-
icates nfLNat and nfNat to normalize terms, and the connective and. The term
used for evaluation is: nfLNat(quicksort(take(10,from(0))))
obj Quicksort is

sorts Nat LNat Bool2 .

op 0 : -> Nat .

op s : Nat -> Nat [strat (1)] .

op nil : -> LNat .

op cons : Nat LNat -> LNat [strat (1)] .

op true2 : -> Bool2 .

op false2 : -> Bool2 .

op le : Nat Nat -> Bool2 [strat (1 -2 0)] .

op app : LNat LNat -> LNat [strat (1 0)] .

op low : Nat LNat -> LNat [strat (2 0)] .

op high : Nat LNat -> LNat [strat (2 0)] .

op ifLNat : Bool2 LNat LNat -> LNat [strat (1 0)] .

op quicksort : LNat -> LNat [strat (1 0)] .

op and : Bool2 Bool2 -> Bool2 [strat (1 0)] .

op nfLNat : LNat -> Bool2 [strat (1 0)] .

op nfNat : Nat -> Bool2 [strat (1 0)] .

op from : Nat -> LNat [strat (0)] .

op take : Nat LNat -> LNat [strat (1 -2 0)] .

vars X Y : Nat . vars Z W : LNat . vars A B : Bool2 .

44

eq le(0,Y) = true2 .

eq le(s(X),0) = false2 .

eq le(s(X),s(Y)) = le(X,Y) .

eq app(nil,Z) = Z .

eq app(cons(X,Z),W) = cons(X,app(Z,W)) .

eq low(X,nil) = nil .

eq low(X,cons(Y,Z)) = ifLNat(le(Y,X),cons(Y,low(X,Z)),low(X,Z)) .

eq high(X,nil) = nil .

eq high(X,cons(Y,Z)) = ifLNat(le(Y,X),high(X,Z),cons(Y,high(X,Z))) .

eq ifLNat(true2,Z,W) = Z .

eq ifLNat(false2,Z,W) = W .

eq quicksort(nil) = nil .

eq quicksort(cons(X,Z)) = app(quicksort(low(X,Z)),

cons(X,quicksort(high(X,Z)))) .

eq from(X) = cons(X,from(s(X))) .

eq take(0,Z) = nil .

eq take(s(X),cons(Y,Z)) = cons(Y,take(X,Z)) .

eq nfLNat(nil) = true2 .

eq nfLNat(cons(X,Z)) = and(nfNat(X),nfLNat(Z)) .

eq nfNat(0) = true2 .

eq nfNat(s(X)) = nfNat(X) .

eq and(true2,A) = A .

eq and(false2,A) = false2 .

endo

B.6 Program minsort

This program is borrowed from Example 3.10 of [AG01]. The call considered
for evaluation is: nfLNat(minsort(take(10,from(0)),nil))
obj Minsort is

sorts Nat LNat Bool2 .

op 0 : -> Nat .

op s : Nat -> Nat [strat (1)] .

op nil : -> LNat .

op cons : Nat LNat -> LNat [strat (1 -2)] .

op true2 : -> Bool2 .

op false2 : -> Bool2 .

op le : Nat Nat -> Bool2 [strat (1 2 0)] .

op app : LNat LNat -> LNat [strat (1 0)] .

op rm : Nat LNat -> LNat [strat (2 0)] .

op min : LNat -> Nat [strat (1 0)] .

op eqNat : Nat Nat -> Bool2 [strat (1 2 0)] .

op ifNat : Bool2 Nat Nat -> Nat [strat (1 0)] .

op ifLNat : Bool2 LNat LNat -> LNat [strat (1 0)] .

op and : Bool2 Bool2 -> Bool2 [strat (1 0)] .

op minsort : LNat LNat -> LNat [strat (1 2 0)] .

op nfLNat : LNat -> Bool2 [strat (1 0)] .

op nfNat : Nat -> Bool2 [strat (1 0)] .

op take : Nat LNat -> LNat [strat (1 2 0)] .

45

op from : Nat -> LNat [strat (0)] .

vars X Y : Nat . vars Z W : LNat . vars A B : Bool2 .

eq le(0,Y) = true2 .

eq le(s(X),0) = false2 .

eq le(s(X),s(Y)) = le(X,Y) .

eq app(nil,Z) = Z .

eq app(cons(X,Z),W) = cons(X,app(Z,W)) .

eq rm(X,nil) = nil .

eq rm(X,cons(Y,Z)) = ifLNat(eqNat(X,Y),rm(X,Z),cons(Y,rm(X,Z))) .

eq min(cons(X,nil)) = X .

eq min(cons(X,cons(Y,Z))) = ifNat(le(Y,X),min(cons(Y,Z)),min(cons(X,Z))) .

eq eqNat(0,0) = true2 .

eq eqNat(s(X),0) = false2 .

eq eqNat(0,s(X)) = false2 .

eq eqNat(s(X),s(Y)) = eqNat(X,Y) .

eq ifLNat(true2,Z,W) = Z .

eq ifLNat(false2,Z,W) = W .

eq ifNat(true2,X,Y) = X .

eq ifNat(false2,X,Y) = Y .

eq minsort(nil,nil) = nil .

eq minsort(cons(X,Z),W) = ifLNat(eqNat(X,min(cons(X,Z))),

cons(X,minsort(app(rm(X,Z),W),nil)),

minsort(Z,cons(X,W))) .

eq from(X) = cons(X,from(s(X))) .

eq take(0,W) = nil .

eq take(s(X),cons(Y,Z)) = cons(Y,take(X,Z)) .

eq nfLNat(nil) = true2 .

eq nfLNat(cons(X,Z)) = and(nfNat(X),nfLNat(Z)) .

eq nfNat(0) = true2 .

eq nfNat(s(X)) = nfNat(X) .

eq and(true2,A) = A .

eq and(false2,A) = false2 .

endo

B.7 Program mod

This program is borrowed from Example 3.5 of [AG01]. Auxiliary functions
for natural numbers are included, namely fact, times, and plus. The call
considered for evaluation is: mod(fact(fact(3)),2)
obj MOD is

sorts Nat Bool2 .

op 0 : -> Nat .

op s : Nat -> Nat [strat (1)] .

op true2 : -> Bool2 .

op false2 : -> Bool2 .

op minus : Nat Nat -> Nat [strat (1 -2 0)] .

op mod : Nat Nat -> Nat [strat (1 -2 0)] .

op le : Nat Nat -> Bool2 [strat (1 -2 0)] .

op ifNat : Bool2 Nat Nat -> Nat [strat (1 0)] .

46

op plus : Nat Nat -> Nat [strat (1 0)] .

op times : Nat Nat -> Nat [strat (1 0)] .

op fact : Nat -> Nat [strat (1 0)] .

vars M N : Nat .

eq le(0,M) = true2 .

eq le(s(N),0) = false2 .

eq le(s(N),s(M)) = le(N,M) .

eq minus(0,N) = 0 .

eq minus(s(M),0) = s(M) .

eq minus(s(M),s(N)) = minus(M,N) .

eq mod(0,M) = 0 .

eq mod(s(N),0) = 0 .

eq mod(s(N),s(M)) = ifNat(le(M,N),mod(minus(N,M),s(M)),s(N)) .

eq ifNat(true2,N,M) = N .

eq ifNat(false2,N,M) = M .

eq plus(0,N) = N .

eq plus(s(M),N) = s(plus(M,N)) .

eq times(0,N) = 0 .

eq times(s(M),N) = plus(N,times(M,N)) .

eq fact(0) = s(0) .

eq fact(s(N)) = times(s(N),fact(N)) .

endo

B.8 Program mod’

This program is similar to program mod but positive annotations are provided
for symbols times and plus in order to avoid differences due to sharing of
variables. The call considered for evaluation is: mod(fact(fact(3)),2)
obj MOD is

sorts Nat Bool2 .

op 0 : -> Nat [strat ()] .

op s : Nat -> Nat [strat (1)] .

op true2 : -> Bool2 .

op false2 : -> Bool2 .

op minus : Nat Nat -> Nat [strat (1 -2 0)] .

op mod : Nat Nat -> Nat [strat (1 -2 0)] .

op le : Nat Nat -> Bool2 [strat (1 -2 0)] .

op ifNat : Bool2 Nat Nat -> Nat [strat (1 0)] .

op plus : Nat Nat -> Nat [strat (1 2 0)] .

op times : Nat Nat -> Nat [strat (1 2 0)] .

op fact : Nat -> Nat [strat (1 0)] .

vars M N : Nat .

eq le(0,M) = true2 .

eq le(s(N),0) = false2 .

eq le(s(N),s(M)) = le(N,M) .

eq minus(0,N) = 0 .

eq minus(s(M),0) = s(M) .

eq minus(s(M),s(N)) = minus(M,N) .

eq mod(0,M) = 0 .

47

eq mod(s(N),0) = 0 .

eq mod(s(N),s(M)) = ifNat(le(M,N),mod(minus(N,M),s(M)),s(N)) .

eq ifNat(true2,N,M) = N .

eq ifNat(false2,N,M) = M .

eq plus(0,N) = N .

eq plus(s(M),N) = s(plus(M,N)) .

eq times(0,N) = 0 .

eq times(s(M),N) = plus(N,times(M,N)) .

eq fact(0) = s(0) .

eq fact(s(N)) = times(s(N),fact(N)) .

endo

B.9 Program average

This program is borrowed from Example 3.15 of [AG01]. Auxiliary functions
for natural numbers are included, namely fact, times, and plus. The call con-
sidered for evaluation is: average(square(square(4)),square(square(4)))
obj AVERAGE is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat [strat (1)] .

op average : Nat Nat -> Nat [strat (-1 -2 0)] .

op plus : Nat Nat -> Nat [strat (1 0)] .

op times : Nat Nat -> Nat [strat (1 0)] .

op fact : Nat -> Nat [strat (1 0)] .

op square : Nat -> Nat [strat (1 0)] .

vars M N : Nat .

eq average(0,0) = 0 .

eq average(0,s(0)) = 0 .

eq average(0,s(s(0))) = s(0) .

eq average(s(M),N) = average(M,s(N)) .

eq average(M,s(s(s(N)))) = s(average(s(M),N)) .

eq plus(0,N) = N .

eq plus(s(M),N) = s(plus(M,N)) .

eq times(0,N) = 0 .

eq times(s(M),N) = plus(N,times(M,N)) .

eq square(N) = times(N,N) .

eq fact(0) = s(0) .

eq fact(s(N)) = times(s(N),fact(N)) .

endo

48

C Proof of termination of pi program

Consider the program of Section B.1. After applying the transformation in-
cluded in this paper for proving termination, we obtain the following program:
obj PI4tr is

sorts Nat LNat Recip LRecip .

op 0 : -> Nat .

op s : Nat -> Nat [strat (1)] .

op posrecip : Nat -> Recip [strat (1)] .

op negrecip : Nat -> Recip [strat (1)] .

op nil : -> LNat .

op cons : Nat LNat -> LNat [strat (1)] .

op cons2 : Nat LNat -> LNat [strat (2)] .

op rnil : -> LRecip .

op rcons : Recip LRecip -> LRecip [strat (1 2)] .

op from : Nat -> LNat [strat (1 0)] .

op 2ndspos : Nat LNat -> LRecip [strat (1 2 0)] .

op 2ndsneg : Nat LNat -> LRecip [strat (1 2 0)] .

op pi : Nat -> LRecip [strat (1 0)] .

op plus : Nat Nat -> Nat [strat (1 2 0)] .

op times : Nat Nat -> Nat [strat (1 2 0)] .

op square : Nat -> Nat [strat (1 0)] .

vars N X Y : Nat . var Z : LNat .

eq from(X) = cons(X,from(s(X))) .

eq 2ndspos(0,Z) = rnil .

eq 2ndspos(s(N),cons(X,Z)) = 2ndspos(s(N),cons2(X,Z)) .

eq 2ndspos(s(N),cons2(X,cons(Y,Z))) = rcons(posrecip(Y),2ndsneg(N,Z)) .

eq 2ndsneg(0,Z) = rnil .

eq 2ndsneg(s(N),cons(X,Z)) = 2ndsneg(s(N),cons2(X,Z)) .

eq 2ndsneg(s(N),cons2(X,cons(Y,Z))) = rcons(negrecip(Y),2ndspos(N,Z)) .

eq pi(X) = 2ndspos(X,from(0)) .

eq plus(0,Y) = Y .

eq plus(s(X),Y) = s(plus(X,Y)) .

eq times(0,Y) = 0 .

eq times(s(X),Y) = plus(Y,times(X,Y)) .

eq square(X) = times(X,X) .

endo

Following [Luc01a], in order to prove termination of PI4tr (which only con-
tains positive annotations), we can use the techniques for proving termination
of context-sensitive rewriting (see [Luc02c] for a survey of these techniques).
The application of Zantema’s transformation ([Zan97]) to remove positive an-
notations, yields the following TRS (in a generic syntax not adhering to the
OBJ syntax):
from(X) → cons(X,n from(s(X)))

2ndspos(0,Z) → rnil

2ndspos(s(N),cons(X,Z)) → 2ndspos(s(N),cons2(X,activate(Z)))

2ndspos(s(N),cons2(X,cons(Y,Z))) → rcons(posrecip(Y),2ndsneg(N,activate(Z)))

2ndsneg(0,Z) → rnil

49

2ndsneg(s(N),cons(X,Z)) → 2ndsneg(s(N),cons2(X,activate(Z)))

2ndsneg(s(N),cons2(X,cons(Y,Z))) → rcons(negrecip(Y),2ndspos(N,activate(Z)))

pi(X) → 2ndspos(X,from(0))

plus(0,Y) → Y

plus(s(X),Y) → s(plus(X,Y))

times(0,Y) → 0

times(s(X),Y) → plus(Y,times(X,Y))

square(X) → times(X,X)

from(X) → n from(X)

activate(n from(X)) → from(X)

activate(X) → X

Termination of this program can be proved with the CiME 2.0 system [EC96]
(available at http://cime.lri.fr/) by using dependency graphs and simple-
mixed interpretations:

CiME> termination R;

Entering the termination expert. Verbose level = 0

checking each of the 3 strongly connected components :

checking component 1 (disjunction of 1 constraints)

[rnil] = 0;

[0] = 0;

[activate](X0) = X0;

[n__from](X0) = 0;

[square](X0) = X02;

[pi](X0) = 0;

[negrecip](X0) = 0;

[posrecip](X0) = 0;

[s](X0) = X0 + 1;

[from](X0) = 0;

[times](X0,X1) = X1*X0;

[plus](X0,X1) = X1 + X0;

[2ndsneg](X0,X1) = 0;

[rcons](X0,X1) = 0;

[cons2](X0,X1) = 0;

[2ndspos](X0,X1) = 0;

[cons](X0,X1) = 0;

[’plus‘](X0,X1) = X0;

checking component 2 (disjunction of 1 constraints)

[rnil] = 0;

[0] = 0;

[activate](X0) = X0;

[n__from](X0) = 0;

[square](X0) = X02;

[pi](X0) = 0;

[negrecip](X0) = 0;

[posrecip](X0) = 0;

[s](X0) = X0 + 1;

[from](X0) = 0;

50

[times](X0,X1) = X1*X0;

[plus](X0,X1) = X1 + X0;

[2ndsneg](X0,X1) = 0;

[rcons](X0,X1) = 0;

[cons2](X0,X1) = 0;

[2ndspos](X0,X1) = 0;

[cons](X0,X1) = 0;

[’times‘](X0,X1) = X0;

checking component 3 (disjunction of 2 constraints)

[rnil] = 0;

[0] = 0;

[activate](X0) = X0;

[n__from](X0) = 0;

[square](X0) = X02;

[pi](X0) = 0;

[negrecip](X0) = 0;

[posrecip](X0) = 0;

[s](X0) = X0 + 1;

[from](X0) = 0;

[times](X0,X1) = X1*X0;

[plus](X0,X1) = X1 + X0;

[2ndsneg](X0,X1) = 0;

[rcons](X0,X1) = 0;

[cons2](X0,X1) = 0;

[2ndspos](X0,X1) = 0;

[cons](X0,X1) = 0;

[’2ndsneg‘](X0,X1) = X0;

[’2ndspos‘](X0,X1) = X0;

Termination proof found.

Execution time: 4.200000 sec

- : unit = ()

51

